
Journal of Computational Science 2 (2011) 105– 112

Contents lists available at ScienceDirect

Journal of Computational Science

jo ur nal homepage: www.elsev ier .com/ l ocate / jocs

WaLBerla: HPC software design for computational engineering simulations

C. Feichtinger ∗, S. Donath, H. Köstler, J. Götz, U. Rüde
Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany

a r t i c l e i n f o

Article history:
Received 6 April 2010
Received in revised form 8 November 2010
Accepted 17 January 2011
Available online 29 March 2011

Keywords:
Lattice-Boltzmann method
MPI
Software Quality
Software Engineering

a b s t r a c t

WaLBerla (Widely applicable Lattice-Boltzmann from Erlangen) is a massively parallel software frame-
work supporting a wide range of physical phenomena. This article describes the software designs realizing
the major goal of the framework, a good balance between expandability and scalable, highly optimized,
hardware-dependent, special purpose kernels. To demonstrate our designs, we discuss the coupling of
our Lattice-Boltzmann fluid flow solver and a method for fluid structure interaction. Additionally, we
show a software design for heterogeneous computations on GPU and CPU utilizing optimized kernels.
Finally, we estimate the software quality of the framework on the basis of software quality factors.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Simulation becomes a more and more important fundamental
approach to scientific discoveries that complements theory and
experiment. The multi-disciplinary field of computational science
and engineering (CSE) has been established in order to deal with
large scale computer simulations and optimization of mathemati-
cal models. CSE is used successfully e.g. by aerospace, automotive,
and processing industries, as well as in medical technology. Many
applications in CSE require large scale computation and are per-
formed on high performance computing (HPC) clusters, therefore
software development in CSE is dominated by the need of effi-
cient and scalable codes. On the one hand, the various applications
from different fields show a significant overlap in the underlying
physical or mathematical models and therefore basic numerical
algorithms can be reused. On the other hand, the trend towards
multiphysics simulation forces current frameworks to also support
various numerical algorithms. This requires the development of
modular and easily extendable software frameworks that cover a
wide range of applications. In this article, we describe our massively
parallel multiphysics software framework WaLBerla that is origi-
nally centered around the Lattice-Boltzmann method (LBM), but
its applicability is not limited to this algorithm. The LBM within
WaLBerla serves as an alternative to a Navier Stokes solver for
computing instationary flow phenomena. A description of the LBM
is given in Section 2. Examples of established Lattice-Boltzmann

∗ Corresponding author.
E-mail address: Christian.Feichtinger@informatik.uni-erlangen.de

(C. Feichtinger).

frameworks are, e.g. Peano [6], Virtual Fluids [7], ILBDC [8], Sail-
fish [9], Palabos [10], Muphy [11], and Ludwig [12]. Compared to
WaLBerla these frameworks differ in fundamental design decisions,
some e.g. use different programming languages like python instead
of C++, differ in the underlying data structures, e.g. list based data
structures instead of block structured grids, are optimized for a sin-
gle hardware or simulation task, provide an interface for interactive
steering, and some do not support massively parallel simulations.

Right from the start WaLBerla has been implemented utiliz-
ing software engineering concepts and common design patterns
[13]. The general software development process in WaLBerla is a
mixture of the spiral model and prototyping [14,15]. During this
process, prototypes are defined with certain specifications, which
are implemented by our software designs. The designs introduced
in this work enable us to realize a general and expandable frame-
work while maintaining runtime efficiency and scalability. In detail,
the WaLBerla 1.0 prototype is designed to fulfill the following
goals:

• Understandability and usability: Easy integration of new simula-
tion scenarios and numerical methods also by non-programming
experts.

• Portability: Portable to various HPC supercomputer architectures
and operating system environments.

• Maintainability and expandability: Integration of new functional-
ity without major restructuring of code or modification of core
parts in the framework.

• Efficency: Possibility to integrate optimized kernels to enable effi-
cient, hardware-adapted simulations.

• Scalability: Support of massively parallel simulations.

1877-7503/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.jocs.2011.01.004

dx.doi.org/10.1016/j.jocs.2011.01.004
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
mailto:Christian.Feichtinger@informatik.uni-erlangen.de
dx.doi.org/10.1016/j.jocs.2011.01.004

106 C. Feichtinger et al. / Journal of Computational Science 2 (2011) 105– 112

Fig. 1. Selection of simulation tasks in WaLBerla. The implementation has also been carried out within several cooperations and by master students. Form top left to lower
right, we have included free-surface flows [1], free-surface flows with floating objects [2], flows through porous media, clotting processes in blood vessels [3], particulate
flows for several million volumetric particles [4] on up to 8192 cores, and a fluctuating Lattice-Boltzmann [5] for nanoscale flows where thermal fluctuations are important.

With this prototype it has already been possible to solve various
complex simulation tasks on massively parallel systems. Some of
them can be seen in Fig. 1.

Currently, a new prototype is under development extending
WaLBerla 1.0 to the needs of novel architectures with accelerators,
such as GPUs, to new simulation tasks, and the increasing num-
ber of users. In addition to WaLBerla 1.0, e.g. the new prototype
WaLBerla 2.0 has refined the design goals:

• Understandability and usability: Further improvement of the soft-
ware quality by forcing a modular implementation using dynamic
shared libraries and applying common C++ design patterns.

• Portability: Enable heterogeneous computations involving e.g.
GPUs and CPUs by supporting CUDA or OpenCL kernels.

• Maintainability and expandability: Extension of the framework by
adaptive grid-refinement.

• Efficency and scalability: Implementation of load balancing strate-
gies.

Heterogeneous computations on CPUs and GPUs are already
supported by WaLBerla 2.0 and will be discussed in detail. The
designs for load balancing and adaptivity are currently under devel-
opment.

Our results described in this article are structured as follows:
the Lattice-Boltzmann method is described in Section 2, followed
by the introduction of the software designs of WaLBerla 1.0 and 2.0
in Sections 3 and 4. In Section 5 the software quality of the frame-
work will be discussed with respect to understandability, usability,
reliability, portability, maintainability, extensibility, efficiency, and
scalability. The article is concluded in Section 6.

2. The Lattice-Boltzmann method

The Lattice-Boltzmann method is one possible approach to solve
computational fluid dynamics problems numerically. Computa-
tionally, the LBM is based on a uniform grid of cubic cells that
are updated in each time step using an information exchange with
nearest neighbor cells only. Structurally, this is equivalent to an

explicit time stepping for a finite difference scheme, or also a cel-
lular automaton. Different from conventional computational fluid
dynamics, the LBM uses a set of particle distribution functions (PDF)
in each cell. A PDF is defined as the expected value of particles in a
volume located at the lattice position xi with the lattice velocity e˛,i.
For the LBM the lattice velocities e˛,i determine the finite difference
stencil, where ̨ represents an entry in the stencil. In 3D and with
the so-called D3Q19 model [16] a 19 point stencil is used resulting
in 19 PDFs in each cell. Hence, in each time step 19 PDFs have to be
advected for each cell to the neighboring cells, which is followed
by the application of a collision operator. Discretized in time and
space, and with the single relaxation time collision operator [16]
the LBM is given by:

f˛(xi + e˛,iıt, t + ıt) − f˛(xi, t)

= −ıt

�
[f˛(xi, t) − f (eq)

˛ (�(xi, t), ui(xi, t))], (1)

where t is the time and ıt is the length of one discrete time step. The
relaxation time � can be determined from the lattice viscosity � (Eq.
2). Further, f (eq)

˛ (�, ui) is the equilibrium distribution depending on
the macroscopic velocity ui and the macroscopic density �. For the
isothermal case it is given by the Maxwell–Boltzmann distribution
function discretized for low Mach numbers. The macroscopic quan-
tities of interest (�, p, ui) are determined from the moments of the
distribution functions:

�ui =
18∑

˛=0

e˛,i · f˛ � =
18∑

˛=0

f˛,

p = c2
s �,

� =
(

� − 1
2

)
c2

s ıt. (2)

In multiphysics applications, the LBM must be coupled to other
models. These include additional field equations, e.g. for tempera-
ture, energy or electrostatic fields that can be discretized by finite
differences, finite volumes, or finite elements. WaLBerla provides

Download English Version:

https://daneshyari.com/en/article/429356

Download Persian Version:

https://daneshyari.com/article/429356

Daneshyari.com

https://daneshyari.com/en/article/429356
https://daneshyari.com/article/429356
https://daneshyari.com

