
Journal of Computational Science 5 (2014) 76–84

Contents lists available at ScienceDirect

Journal of Computational Science

j ourna l h om epage: www.elsev ier .com/ locate / jocs

An adjoint-based scalable algorithm for time-parallel integration

Vishwas Rao ∗, Adrian Sandu
Computational Science Laboratory, Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States

a r t i c l e i n f o

Article history:
Received 9 October 2012
Received in revised form 19 February 2013
Accepted 17 March 2013
Available online 28 March 2013

Keywords:
Parareal
Adjoints
Sensitivity analysis

a b s t r a c t

As parallel architectures evolve the number of available cores continues to increase. Applications need
to display a high degree of concurrency in order to effectively utilize the available resources. Large scale
partial differential equations mainly rely on a spatial domain decomposition approach, where the number
of parallel tasks is limited by the size of the spatial domain. Time parallelism offers a promising approach
to increase the degree of concurrency. ‘Parareal’ is an iterative parallel in time algorithm that uses both
low and high accuracy numerical solvers. Though the high accuracy solvers are computed in parallel, the
low accuracy ones are in serial.

This paper revisits the parallel in time algorithm [11] using a nonlinear optimization approach. Like
in the traditional ‘Parareal’ method, the time interval is partitioned into subintervals, and local time
integrations are carried out in parallel. The objective cost function quantifies the mismatch of local solu-
tions between adjacent subintervals. The optimization problem is solved iteratively using gradient-based
methods. All the computational steps – forward solutions, gradients, and Hessian-vector products –
involve only ideally parallel computations and therefore are highly scalable.

The feasibility of the proposed algorithm is studied on three different model problems, namely, heat
equation, Arenstorf’s orbit, and the Lorenz model.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Computational sciences use numerical models to simulate
time-evolving systems, where the governing physical laws are for-
mulated as partial differential equations (PDEs). The computations
associated with initial value problems are typically sequential, and
advance the solution one time step after another. This mimics the
physical behavior of the system where the current state determines
its future evolution.

Considerable effort is spent in developing large-scale numerical
PDE models that can run efficiently on high-performance com-
puting architectures. The ubiquitous strategy is to parallelize the
workload in space by mapping different parts of the simulation grid
onto individual compute nodes. In contrast, parallelizing in time is
not common practice. In principle the simulation time interval can
also be split into subintervals: this decomposes the initial value
problem into a sequence of initial value subproblems. The chal-
lenge for solving these subproblems in parallel is that each of them
requires a different initial condition.

The ‘Parareal’ algorithm proposed by Lions et al. [1] computes
the intermediate initial conditions for each subproblem by a scalar,

∗ Corresponding author. Tel.: +1 5402605414.
E-mail addresses: visrao@cs.vt.edu, vishwas1984@gmail.com (V. Rao),

sandu@vt.edu (A. Sandu).

coarse numerical integration. The coarse (low cost, low accuracy)
and fine (high cost, high accuracy) solvers are applied in succes-
sion, and each iteration of the algorithm reduces the global error
of the solution. This algorithm was extensively applied for solv-
ing problems in fluids and structure [2], Navier–Stokes equations
[3], for reservoir simulation [4]. Staff and Rønquist discuss the sta-
bility of the ‘Parareal’ algorithm in [5]. Convergence of ‘Parareal’
applied to PDEs is discussed in [6]. Gander and Vanderwalle [7] cast
‘Parareal’ as a multiple shooting method and a multigrid method.
There have been attempts to parallelize different portions of the
solution procedure in related problems in the areas of optimal
control [8], parameter estimation [9], CFD applications [10]. The
traditional ‘Parareal’ method obtains the fine solutions in paral-
lel, but requires a serial coarse solution to be computed in every
iteration.

In a quest to increase scalability we revisit the adjoint-based par-
allel in time algorithm of Maday and Turinici [11] formulated in the
framework of nonlinear optimization. Gradient and the Hessian-
vector product computations, needed in optimization, are carried
out using adjoint sensitivity analysis. The main computational steps
are ideally parallel, which makes the entire algorithm highly scal-
able. The proposed approach has the potential to become useful
for parallelizing large scale problems like climate modeling and
weather forecasting [12].

The remaining part of the paper is organized as follows.
In Section 2 we introduce the problem, the notation, and the

1877-7503/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.jocs.2013.03.004

dx.doi.org/10.1016/j.jocs.2013.03.004
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
mailto:visrao@cs.vt.edu
mailto:vishwas1984@gmail.com
mailto:sandu@vt.edu
dx.doi.org/10.1016/j.jocs.2013.03.004

V. Rao, A. Sandu / Journal of Computational Science 5 (2014) 76–84 77

traditional ‘Parareal’ algorithm. Section 3 presents the proposed
adjoint-based ‘Parareal’ algorithm, and discusses the computa-
tion of first and second order derivative information needed in
optimization. Numerical experiments are performed in Section 4.
Section 5 draws conclusions and points to future work.

2. The traditional ‘Parareal’ algorithm

Consider the following ODE,

y′ = f (t, y) , y(tinitial) = y0, tinitial ≤ t ≤ tfinal. (1)

2.1. Notation

In this sub-section we introduce notation which will be useful
in understanding the parallel solution procedure. A numerical inte-
gration method (e.g., a Runge Kutta method) uses N time steps to
solve the differential equation (1)

ti = ti−1 + hi, i = 1, . . ., N, t0 = tinitial, tN = tfinal,

and computes the numerical solutions yi≈ y(ti−1) for i = 0, . . ., N.
We formally denote the numerical solution process that computes
the solution at ti from the solution at ti by:

yi = Mi−1,i (yi−1), i = 1, . . ., N. (2)

Similarly, the set of consecutive numerical steps that evolve the
solution from tk to t�, � > k, will be denoted by

y� = Mk,� (yk), ∀ � > k.

For example,

yk+3 = Mk,k+3 (yk) = Mk+2,k+3(Mk+1,k+2(Mk,k+1(yk))).

The serial solution procedure consists in applying N consecutive
steps of the method, starting from the initial condition, to obtain
the solution at the final time:

y(tfinal) ≈ yN = M0,N (y0).

In the context of the ‘Parareal’ algorithm, we regard M to be a
“fine” (high compute time and high accuracy) solver. Similarly, we
consider a “coarse” (low accuracy and high efficiency) numerical
process, and denote it by:

yi = Gi−1,i (yi−1), i = 1, . . ., N. (3)

2.2. Partitioning the simulation time interval

For a parallel-in-time solution we partition the simulation time
interval [tinitial, tfinal] into M subintervals, with boundaries as shown
below:

tinitial = T0 < T1 < · · · < TM−1 < TM = tfinal. (4)

We choose the subinterval boundaries such that they correspond
to integer steps of the “fine” numerical method,

Ti = t�i
, i = 0, . . ., M,

where �i are integers. This implies that �0 = 0 and �M = N. The first
subinterval consists of the first �1 steps of the numerical method

[T0, T1] = [t0, t�1
].

The second subinterval consists of the next �2− � 1 steps of the
numerical method

[T1, T2] = [t�1
, t�2

] = [t�1
, t�1+1] ∪ [t�1+1, t�1+2] ∪ · · · ∪ [t�2−1, t�2

],

and so on.

Consider the following approximations of the solution at the
interval boundaries:

u0 = y0 ; ui ≈ y(t+
i

), i = 1, . . ., M − 1.

Then a numerical solution can be computed on each interval [ti−1,
ti] starting from the initial condition ui−1:

ũi = M�i−1,�i
(ui−1), in parallel for i = 1, . . ., M. (5)

Since each interval has its own known initial condition, the integra-
tions (5) proceed independently and can be computed in parallel.

2.3. The traditional ‘Parareal’ iterations

Lions et al. [1] define the ‘Parareal’ algorithm using both the fine
(2) and the coarse (3) numerical solution operators. Let u(k)

i
≈ y(Ti)

denote the initial conditions for the interval [Ti, Ti+1] at the kth
iteration. The following iterative scheme is used to obtain improved
numerical solutions

u(k+1)
i+1 = Gi,i+1(u(k+1)

i
) + Mi,i+1(u(k)

i
) − Gi,i+1(u(k)

i
). (6)

Note that the coarse integration is carried out serially, while the
fine integration is carried out in parallel (5). The serial coarse solver
represents a major bottleneck that prevents the scalability of tra-
ditional ‘Parareal’ (6) on a very large number of threads.

3. An optimization approach to time parallel discretizations

In this section we propose new parallel in time solution proce-
dure derived in a nonlinear optimization framework.

3.1. Define a cost function to penalize jumps

The set of ODEs (5) lead to a solution that is piecewise contin-
uous within each interval [Ti−1, Ti]. At each interval boundary Ti
there is a jump between ũi∼y(T−

i
), the solution computed on [Ti−1,

Ti], and ui∼y(T+
i

), the initial condition for the next interval [Ti, Ti+1].
To obtain the solution of the original ODE we need to choose the
initial conditions ui such that the result of the integration on the
current interval matches the initial conditions of the next interval,

ui = ũi, i = 1, . . ., M.

We define a cost function that penalizes the jumps across interval
boundaries:

J(u1, . . ., uM−1)

= 1
2

N−1∑
i=1

(ui − Mi−1,i (ui−1))T R−1
i (ui − Mi−1,i (ui−1)). (7)

Here Ri’s are symmetric weight matrices and can be chosen as
follows:

Ri = diag1≤j≤n (Atolj + Rtolj |(ui)j|)2,

where Atol and Rtol are the absolute and relative tolerances used
in the ODE integration, respectively. Note that the cost function is
greater than or equal to zero. The initial conditions for each subin-
terval determine the entire solution. In order to enforce continuity
across boundaries, they are obtained by minimizing this cost func-
tion

(uopt
1 , . . ., uopt

M−1) = arg min
(u1,...,uM−1)

J(u1, . . ., uM−1). (8)

Download English Version:

https://daneshyari.com/en/article/429379

Download Persian Version:

https://daneshyari.com/article/429379

Daneshyari.com

https://daneshyari.com/en/article/429379
https://daneshyari.com/article/429379
https://daneshyari.com

