
Journal of Computational Science 5 (2014) 224–232

Contents lists available at ScienceDirect

Journal of Computational Science

j ourna l h om epage: www.elsev ier .com/ locate / jocs

Chaotic bat algorithm

Amir H. Gandomia, Xin-She Yangb,∗

a Department of Civil Engineering, The University of Akron, Akron, OH 44325, USA
b School of Science and Technology, Middlesex University, Hendon, London NW4 4BT, UK

a r t i c l e i n f o

Article history:
Received 5 December 2012
Received in revised form 18 July 2013
Accepted 4 October 2013
Available online 14 October 2013

Keywords:
Bat algorithm
Chaos
Metaheuristic
Global optimization

a b s t r a c t

Bat algorithm (BA) is a recent metaheuristic optimization algorithm proposed by Yang. In the present
study, we have introduced chaos into BA so as to increase its global search mobility for robust global
optimization. Detailed studies have been carried out on benchmark problems with different chaotic
maps. Here, four different variants of chaotic BA are introduced and thirteen different chaotic maps are
utilized for validating each of these four variants. The results show that some variants of chaotic BAs can
clearly outperform the standard BA for these benchmarks.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Many design optimization problems are often highly nonlin-
ear, which can typically have multiple modal optima, and it is thus
very challenging to solve such multimodal problems. To cope with
this issue, global optimization algorithms are widely attempted,
however, traditional algorithms may not produce good results, and
latest trends are to use new metaheuristic algorithms [1]. Meta-
heuristic techniques are well-known global optimization methods
that have been successfully applied in many real-world and com-
plex optimization problems [2,3]. These techniques attempt to
mimic natural phenomena or social behavior so as to generate
better solutions for optimization problem by using iterations and
stochasticity [4]. They also try to use both intensification and
diversification to achieve better search performance. Intensifica-
tion typically searches around the current best solutions and selects
the best candidate designs, while the diversification process allows
the optimizer to explore the search space more efficiently, mostly
by randomization [1].

In recent years, several novel metaheuristic algorithms have
been proposed for global search. Such algorithms can increase
the computational efficiency, solve larger problems, and imple-
ment robust optimization codes [5]. For example, Xin-She Yang [6]
recently developed a promising metaheuristic algorithm, called bat
algorithm (BA). Preliminary studies suggest that the BA can have

∗ Corresponding author. Tel.: +44 2084112351.
E-mail addresses: a.h.gandomi@gmail.com, ag72@uakron.edu (A.H. Gandomi),

x.yang@mdx.ac.uk (X.-S. Yang).

superior performance over genetic algorithms and particle swarm
optimization [6], and it can solve real world and engineering opti-
mization problems [7–10]. On the other hand, recent advances in
theories and applications of nonlinear dynamics, especially chaos,
have drawn more attention in many fields [10]. One of these fields
is the applications of chaos in optimization algorithms to replace
certain algorithm-dependent parameters [11].

Previously, chaotic sequences have been used to tune param-
eters in metaheuristic optimization algorithms such as genetic
algorithms [12], particle swarm optimization [13], harmony search
[14], ant and bee colony optimization [15,16], imperialist competi-
tive algorithm [17], firefly algorithm [18], and simulated annealing
[19]. Such a combination of chaos with metaheuristics has shown
some promise once the right set of chaotic maps are used. It is
still not clear why the use of chaos in an algorithm to replace cer-
tain parameters may change the performance, however, empirical
studies indeed indicate that chaos can have high-level of mixing
capability, and thus it can be expected that when a fixed parame-
ter is replaced by a chaotic map, the solutions generated may have
higher mobility and diversity. For this reason, it may be useful to
carry out more studies by introducing chaos to other, especially
newer, metaheuristic algorithms.

Therefore, one of the aims of this paper is to introduce chaos into
the standard bat algorithm, and as a result, we propose a chaos-
based bat algorithm (CBA). As different chaotic maps may lead to
different behavior of the algorithm, we then have a set of chaos-
based bat algorithms. In these algorithms, we use different chaotic
systems to replace the parameters in BA. Thus different methods
that use chaotic maps as potentially efficient alternatives to pseu-
dorandom sequences have been proposed. In order to evaluate the

1877-7503/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.jocs.2013.10.002

dx.doi.org/10.1016/j.jocs.2013.10.002
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jocs.2013.10.002&domain=pdf
mailto:a.h.gandomi@gmail.com
mailto:ag72@uakron.edu
mailto:x.yang@mdx.ac.uk
dx.doi.org/10.1016/j.jocs.2013.10.002

A.H. Gandomi, X.-S. Yang / Journal of Computational Science 5 (2014) 224–232 225

proposed algorithms, a set of unimodal and multimodal mathe-
matical benchmarks are utilized. The simulation results reveal the
improvements of the new algorithms, due to the application of
deterministic chaotic signals instead of constant values.

The rest of the paper is organized as follows: Section 2 presents
the descriptions of the standard BA and proposes four different
chaotic BAs. The chaotic maps that generate chaotic sequences in
the BA steps are described in Section 3. Section 4 describes how
to implement the simulations, while in Section 5, we discuss the
tuning of the BA parameters and finding the best chaotic BA. Finally,
Section 6 presents the unique features of the chaotic BAs and out-
lines directions for further research.

2. Bat algorithm

The bat-inspired metaheuristic algorithm, namely the bat algo-
rithm, was recently proposed by Xin-She Yang [6], based on the
echolocation of microbats [20]. In the real world, echolocation can
have only a few thousandths of a second (up to about 8–10 ms) with
a varying frequency in the region of 25–150 kHz, corresponding to
the wavelengths of 2–14 mm in the air.

Microbats typically use echolocation for searching for prey.
During roaming, microbats emit short pulses; however, when a
potential prey is nearby, their pulse emits rates increase and the
frequency is tuned up. The increase of the frequency, namely
frequency-tuning, together with the speedup of pulse emission
will shorten the wavelength of echolocations and thus increase
accuracy of the detection. Nature has use frequency-tuning for
many years, and in oil industry, they also use frequency tuning to
detect different layers of potential oil reserves by increasing the fre-
quency and energy for thinner layers. Bat algorithm was developed
to use the key idea of frequency tuning based on the echoloca-
tion of microbats. In the standard bat algorithm, the echolocation
characteristics of microbats can be idealized as the following three
rules:

i. All bats use echolocation to sense distance, and they also ‘know’
the difference between food/prey and background barriers in
some magical way;

ii. Bats fly randomly with velocity vi at position xi with a fixed fre-
quency fmin, varying wavelength � and loudness A0 to search
for prey. They can automatically adjust the wavelength (or fre-
quency) of their emitted pulses and adjust the rate of pulse
emission r ∈ [0,1], depending on the proximity of their target;

iii. Although the loudness can vary in many ways, we assume that
the loudness varies from a large (positive) A0 to a minimum
constant value Amin.

The basic steps of BA can be summarized as the pseudo code
shown in Fig. 1.

For each bat (say i), we have to define its position xi and velocity
vi in a d-dimensional search space, and they should be updated sub-
sequently during the iterations. The new solutions xt

i
and velocities

vt
i

at time step t can be calculated by

fi = fmin + (fmax − fmin) ̌ (1)

vt
i = vt−1

i
+ (xt−1

i
− x∗)fi (2)

xt
i = xt−1

i
+ vt

i (3)

where ̌ in the range of [0,1] is a random vector drawn from a
uniform distribution. Here x* is the current global best location
(solution) found so far, which is located after comparing all the
solutions among all the n bats at the current iteration. As the prod-
uct �i·fi is the velocity increment, we can use either fi (or �i) to
adjust the velocity change while fixing the other factor �i (or fi),

Bat Algorithm

Objective function f (x), x = (x1, ...,xd)
T

Initialize the bat population xi (i = 1,2, ...,n) and vi

Define pulse frequency fi at xi

Initialize pulse rates r and the loudness A
while (t <Max number of iterations)
 Generate new solutions by adjusting frequency,
 and updating velocities and locations/solutions [equations (2) to (4)]

if (rand > r)
 Select a solution among the best solutions
 Generate a local solution around the selected best solution

end if

 Generate a new solution by flying randomly
if (rand < A & f (xi) < f (x*))

 Accept the new solutions
end if

 Rank the bats and find the current best x*

end while

Postprocess results and visualization

Fig. 1. Pseudo code of the bat algorithm (BA).

depending on the type of the problem of interest. In our imple-
mentation, we will use fmin = 0 and fmax = 2, though the actual range
can vary, depending on the domain size of the problem of interest.
Initially, each bat is randomly assigned a frequency that is drawn
uniformly from [fmin, fmax].

By looking at the bat algorithm more closely, we can see that BA
can have global and local search abilities, depending on the parame-
ters, and it can also automatically switch from global search to local
search by tuning relevant parameters. This switch is controlled by

 ̨ and � to be introduce below. The local search is essentially a ran-
dom walk around the current best solutions, and a new solution for
each bat can be generated locally using:

xnew = xold + εAt (4)

where the random number ε is drawn from [−1, 1], while At =
〈

At
i

〉
is the average loudness of all the bats at this time step. In fact, this is
the main updating equation of simulated annealing. For this reason,
simulated annealing can be thought as a very special case of the bat
algorithm.

It is worth pointing out that, to a degree, BA can be considered as
a balanced combination of local and global moves and this is mani-
fested by controlling the loudness and pulse rate. For simplicity, we
can also use A0 = 1 and Amin = 0, assuming Amin = 0 means that a bat
has just found the prey and temporarily stop emitting any sound.
Now we have

At+1
i

= ˛At
i , rt+1

i
= r0

i [1 − exp(−�t)] (5)

where ̨ and � are constants. In fact, ̨ is similar to the cooling factor
of a cooling schedule in the simulated annealing. For any 0 < ˛, � < 1,
we have

At
i → 0, rt

i → r0
i , as t → ∞ (6)

In the simplest case, we can use ̨ = � , and in the standard BA,
we can use ̨ = � = 0.9 to 0.975 in most cases, though have used

 ̨ = � = 0.9 in our simulations. However, the main purpose of this
paper is to use chaotic maps to tune these 4 parameters so as to see
if a chaotic map can improve the efficiency of the bat algorithm.
As we can see below, some chaotic maps can indeed enhance the
efficient of BA.

Download English Version:

https://daneshyari.com/en/article/429394

Download Persian Version:

https://daneshyari.com/article/429394

Daneshyari.com

https://daneshyari.com/en/article/429394
https://daneshyari.com/article/429394
https://daneshyari.com

