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a  b  s  t  r  a  c  t

In this  paper  a new  genetic  algorithm  is developed  to find  the  near  global  optimal  solution  of multimodal
nonlinear  optimization  problems.  The  algorithm  defined  makes  use  of  a real  encoded  crossover  and  muta-
tion operator.  The  performance  of GA  is  tested  on  a  set  of twenty-seven  nonlinear  global  optimization
test  problems  of variable  difficulty  level.  Results  are  compared  with  some  well  established  popular  GAs
existing  in  the  literature.  It is observed  that  the  algorithm  defined  performs  significantly  better  than  the
existing  ones.
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1. Introduction

Many real life problems, when they are represented as a math-
ematical model, turn out to be optimization problem. Often these
optimization problems require the global optimal value of an objec-
tive function which depends upon one or more than one decision
variables. The problem of finding the global optimal solution of
a multimodal function of several variables encountered in many
areas such as sciences, engineering, economics and finance etc. (for
further details refer Goldberg [1], Michalewicz [2] and Deb [3]).
Though, optimization problems in real life scenario involve con-
straints; we restrict our discussion in this work to unconstrained
global optimization problems only. Without loss of generality, an
unconstrained nonlinear programming problem (NLPP) may  be
defined as

Min  f (x), where f : Rn → R,

where x ∈ S, and S is an n-dimensional rectangular hypercube
in Rn identified by ai ≤ xi ≤ bi, i = 1, 2, 3, . . .,  n. These are often
called bounds on the decision variables. A point x * ∈ S is called
a local minima of f if f(x *) ≤ f(x), ∀x ∈ Nε(x *) ∩ S, where Nε(x∗) ={

x| ‖x − x∗‖ < ε, ε > 0
}

is a small neighborhood of the point x*.
If f(x *) ≤ f(x) ∀ x ∈ S then x* is said to be the global minima of f.

A variety of populations based probabilistic techniques such
as genetic algorithms (GA), simulated annealing (SA), differential
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evolution (DE), particle swarm optimization (PSO), etc. have been
proposed in the literature to solve optimization problems. A thor-
ough description of these algorithms could be found in Deb [3],
Kirkpatrick et al. [5], Price et al. [6], Eberhart et al. [7]. Among these
algorithms, genetic algorithms have emerged as a powerful class
of algorithm to solve optimization problems (Back and Schwefel
[8]). Genetic algorithms are robust and efficient search methods
based on Darwin’s principle of natural selection and genetic inheri-
tance. Since their introduction, GAs has frequently been applied as a
search and optimization tool in numerous applications in engineer-
ing and sciences (Li and Wang [9]). GAs can be straightforwardly
applied to solve multidimensional and multimodal optimization
problems seeking global optima. The main attraction of these
algorithms is that no extra information such as the continuity, dif-
ferentiability of objective function and/or constraint is required
while solving the problem. These algorithms are well-matched for
the problems where the feasible region is disconnected.

Most of the classical optimization techniques are iterative meth-
ods in which the initial solution is selected based on the nature
of the problem and are revised using deterministic update rules
which usually depend upon the problem structure. GA works
with a population of candidate solutions (chromosome). Initially,
a suitable encoding scheme is chosen which corresponds to the
candidate represented in search space and each chromosome is
represented by vector of length equivalent to the number of
decision variables defining the dimension of the search space. A
population of randomly chosen candidate solutions is constructed
and objective function values are evaluated corresponding to these
solutions. Every solution is assigned a fitness value which is a mono-
tone function of the objective function value. The population of
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chromosomes is evolved using three operations: selection,
crossover, and mutation.

In earlier studies, the chromosomes were represented by binary
strings of 0 and 1. Binary encoding maps the continuous search
space in to a discrete one having grids. The distance between two
adjacent grids depends upon the length of the binary string used to
represent the chromosome. Binary encoding scheme was found to
be working well with problem having moderate number of decision
variables and problems requiring less precision in the solution but
does not perform satisfactorily when the problem is having large
dimensional search space or require high accuracy in the solution.
The problems with large number of variables may be solved better
by increasing population size and high precision may  be achieved
by increasing the string length. In later studies Goldberg [10] found
that the computation time increases exponentially as the string size
increases. Some other modifications to accelerate the convergence
binary genetic algorithms were reported in Jing and Yang [11].

In early nineties the concept of real coded GA was introduced
in which instead of binary strings, vector of real-valued genes
were used to represent a chromosome (Davis [12], Wright [13],
Janikow and Michalewicz [14], Michalewicz [2], Deb and Agrawal
[15], Herrera and Lozano [16], Herrera et al. [17,18], Tsoulos [19]).
This encoding scheme appears naturally suited for problems having
continuous variables. Like binary coded GA, real coded GA also uses
similar genetic operators: selection, crossover, and mutation. The
real encoding is advantageous over the earlier used binary encoding
in the sense that it gets better customized to optimization of prob-
lems in continuous domain. Though real encoded GA over comes
many difficulties of binary encoded GA, it still suffers from problems
like premature convergence to suboptimal solution and also slow
convergence. These situations arise due to the lack of population
diversity and inability of GA to exploit locally the information of
solutions in the population (Yuan et al. [20]). Considerable amount
of work have been done to enhance the performance of GA by
improving exploration and exploitation potential. The exploration
capabilities of a GA primarily depend upon the crossover operator
used because it utilizes the information about individuals in cur-
rent population and directs the search in other promising region of
the search space. This is one of the major reasons researchers being
paying more attention on designing effective real encoding based
crossover operators.

An important class of crossover operators for real encoding
based chromosomes is parent centric crossover operators. Deb et al.
[21] reported that parent centric crossover operators offer quite
effective and important means of solving real-parameter optimiza-
tion problems. In the present work a new parent centric crossover
operator based on Double Pareto distribution is described. A new
generational GAs is proposed which make use of this crossover
operator and its performance is compared with seven existing GAs
proposed in Deep and Thakur [22,23], Deb [4], Meittinen et al. [24]
and Maaranen et al. [25]. A pair wise comparison of the proposed
GA with the existing GAs is done and then all eight algorithms are
compared simultaneously.

The paper is ordered as follows: a brief review of existing real
coded crossover operators is given in Section 2. The proposed dou-
ble Pareto crossover is defined in Section 3. The operators used
in other genetic algorithms considered for the comparison are
explained in Section 4. The description of the new genetic algo-
rithms based on double Pareto crossover and other seven genetic
algorithms are given in Section 5. In Section 6, the experimental
setup and parameter settings of all the algorithms is described.
Performance of various algorithms and their comparative study is
shown in Section 7. The conclusions drawn based on current study
are presented in Section 8. In Appendix A the formulations of all
test problems and the performance index used for comparing the
algorithms is explained.

2. Real coded crossover operators

A variety of real coded crossover operators have been proposed
in the GA literature. In simple crossover (Michalewicz [26], Wright
[13]), a gene position is randomly selected from a pair of parents
and two  new offspring solutions are made by simply exchanging
the genes. In flat crossover (Radcliffe [27]) an offspring is produced
using uniform distribution between the genes of the two  parents.
Muhlebein and Schlierkamp-Voosen [28] suggested extended line
crossover and extended intermediate crossover. Both crossovers
enhance the search capabilities of flat crossover by allowing explo-
ration in a fixed interval beyond the parents. Eshelman and Schaffer
[29] generalized the idea of Radcliffe [27] and Muhlebein and
Schlierkamp-Voosen [28] by introducing the blend crossover. This
crossover has a user defined parameter  ̨ which allows explor-
ing the interval not only in between the parent genes but also
on the interval extending equally on either side of the parents.
It is also noted that extended intermediate crossover is a special
case of blend-crossover for  ̨ = 0.25. Wright [13] proposed heuristic
crossover which make use of fitness function value of the par-
ent solutions to generate a child solution from a pair of parents.
The solution produced is biased in a linear manner in the direc-
tion of the relatively fit parent. Michalewicz [30] presented a class
of arithmetical crossover which makes use of the idea of creating
children sandwiched between the parents. In single arithmetical
crossover a gene is picked randomly and an offspring is produced
using uniform distribution between the genes. Another offspring
is generated which is mirror image of the earlier generated off-
spring with respect to the mean of the parents. In simple arithmetic
crossover a gene is randomly picked and the method used in sin-
gle arithmetic crossover is used to all genes after this point. In
whole arithmetic crossover the procedure used in single arithmeti-
cal crossover is applied to all genes of the parents. Voigt et al. [31,32]
presented a fuzzy min–max and fuzzy recombination operators.
Herrera and Lozano [16] proposed two  types of dynamic heuris-
tic fuzzy connectives based crossovers. Dynamic fuzzy connective
based crossovers were designed to keep appropriate succession
between exploration and exploitation during the evolution pro-
cess. Heuristic fuzzy connective based crossovers were intended to
explore the region near the best parents in order to maintain the
diversity and keeping convergence speed up in an advantageous
manner. Tsutsui et al. [33] proposed a simplex crossover which is
a multi-parent crossover operator and produces offspring solution
uniformly distributed over the simplex formed by parent solutions.
Simulated binary crossover (Deb and Agrawal [15]) replicates the
functioning of single-point crossover on a string of binary alphabets
in continuous domain. Tutkun [34] proposed a crossover opera-
tor based on Gaussian distribution. Kaelo and Ali [35] suggested
integration of different crossover rules in the genetic algorithm
and recommended some modifications in applying the crossover
rules and localization of searches in their study. Deep and Thakur
[22] presented Laplace crossover operator which generates a pair
of offspring solution from a pair of parent solutions using Laplace
distribution.

Generally the crossover operator is applied on a pairs of parent
solutions to produce two  children solutions. However, crossover
operators with multiple descendants have also been proposed in
the literature. Linear crossover operator creates three offspring
solutions using two parents (Wright [13]). Ono and Kobayashi
[36] introduced unimodal normally distributed crossover opera-
tor (UNDX) in which three parents participate in the crossover
process and two  or more offspring are produced. Later Ono et al.
[37] enhanced the performance of UNDX by incorporating uniform
crossover (UX). A generalized multi-parent UNDX operator having
more than three parents was reported in Kita et al. [38]. A parent
centric crossover (PCX) operator which is a multi-parent crossover
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