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a b s t r a c t

A ˇ-skeleton is a proximity undirected graph whose connectivity is determined by the parameter ˇ. We
study ˇ-skeleton automata where every node is a finite state machine taking two states, and updating
its states depending on the states of adjacent automata-nodes. We allow automata-nodes to remember
their previous states. In computational experiments we study how memory affects the global space–time
dynamics on ˇ-skeleton automata.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In computational geometry and geometric graph theory, a ˇ-
skeleton or beta skeleton is an undirected proximity graph defined
from a set of points in the Euclidean plane. Two points p and q are
connected by an edge whenever their ˇ neighborhood is empty
[24]. In lune-based ˇ-skeletons, the ˇ-neighborhood is defined as:
the intersection of two circles of radius d(p,q)/2ˇ that pass through
p and q, if ˇ ∈ [0,1]; the intersection of two circles of radius ˇd(p,q)/2
centered at the points (1 − ˇ/2)p + (ˇ/2)q and (ˇ/2)p + (1 − ˇ/2)q, if
ˇ ≥ 1.

Fig. 1 shows three ˇ-skeletons with increasing ˇ parameter
value, based on the same 10 nodes. The figure shows also the
ˇ-neighborhoods of the node labeled 1 (upper-right). In the tran-
sition from ˇ = 0.9 to ˇ = 1.0, the 1-node loses its 1–6 and 1–8 links,
whereas from ˇ = 1.0 to ˇ = 1.5 it loses the 1–5 link.

ˇ-Skeletons belong to a family of proximity graphs. which are
monotonously parameterised by the parameter ˇ. The structure
of proximity graphs represents a wide range of natural systems
and is applied in many fields of science. Few examples include geo-
graphical variational analysis [20,27,33], evolutionary biology [26],
simulation of epidemics [36], study of percolation [18] and mag-
netic field [35], design of ad hoc wireless networks [25,28,31,34,40].
Thus developing and analysing computational models of spatially
extended systems on proximity graphs will shed a light onto basic
mechanisms of activity propagation on natural systems.

∗ Corresponding author.
E-mail addresses: ramon.alonso@upm.es (R. Alonso-Sanz),

andrew.adamatzky@uwe.ac.uk (A. Adamatzky).

Automata on ˇ-skeletons were originally introduced in [5] and
studied in a context of excitation dynamics. In the present paper we
develop ideas of [5] along lines of memory-enriched automata and
global dynamics. The paper is structured as follows. In Section 2 we
define automata on ˇ-skeletons. Global dynamics on automata for
ˇ ≥ 1 (planar graphs) are studied in Sections 2.1 and 2.3, whereas
the ˇ < 1 (non-planar graphs) is studied in Section 2.2. Section 4
demonstrates the effects of weighted memory on the behaviour of
automata networks. Automata networks with non-parity rules are
briefly tackled in Section 5. Possible applications of our computa-
tional findings are discussed in Section 6.

2. Automata on beta-skeletons

In the automata on beta-skeletons studied here, each node is
characterized by an internal state whose value belongs to a finite
set. The updating of these states is made simultaneously (à la cellu-
lar automata) according to a common local transition rule involving
only the neighborhood of each node [5]. Thus, if �(T)

i
is taken to

denote the state value of node i at time step T, the site values
evolve by iteration of the mapping: �(T+1)

i
= �({�(T)

j
} ∈ Ni), where

Ni is the set of nodes in the neighborhood of i and � is an arbitrary
function which specifies the automaton rule. This article deals with
two possible state values at each site: � ∈ {0,1}, and the parity rule:
�(T+1)

i
=

∑
j ∈ Ni

�(T)
j

mod 2. Despite its formal simplicity, the parity

rule may exhibit complex behaviour [23].
In the Markovian approach just outlined (referred as ahistoric),

the transition function depends on the neighborhood configuration
of the nodes only at the preceding time step. Explicit historic mem-
ory can be embedded in the dynamics by featuring every node by
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Fig. 1. Three ˇ-skeletons on the same 10 nodes.

Table 1
The core of the FORTRAN progam.

DO it=1,maxit

call MEMORY(MODE,NEW,ISIG,n,it,maxit,itau)

DO i=1,n;iadd=0

do j=1,n;if(ADJ(i,j)==0)cycle

iadd=iadd+MODE(j)

enddo

NEW(i)=mod(iadd,2)

ENDDO

ENDDO

subroutine MEMORY(MODE,NEW,ISIG,n,it,maxit,itau)

integer MODE(n),NEW(n),ISIG(n,maxit)

ISIG(:,it)=NEW;MODE=NEW

itin=max(1,it-itau+1);itaux=min(it,itau)

do i=1,n; inn=sum(ISIG(i,itin:it))

if(2*inn>itaux)MODE(i)=1

if(2*inn<itaux)MODE(i)=0

enddo

END

a mapping of its states in the previous time steps. Thus, what is
here proposed is to maintain the transition function � unaltered,
but make it act on the nodes featured by a trait state obtained as
a function of their previous states: �(T+1)

i
= �({s(T)

j
} ∈ Nj), s(T)

j
being

a state function of the series of states of the node j up to time-
step T. We will consider here the most frequent state (or majority)
memory implementation. Thus, with unlimited trailing memory:
s(T)

i
= mode(�(T)

i
, �(T−1)

i
, . . . , �(1)

i
), whereas with memory of the last

� state values: s(T)
i

= mode(�(T)
i

, �(T−1)
i

, . . . , �(T)
i

), with T = max(1,
T − � + 1). In the case of equality in the number of time-steps that
a node was 0 and 1, the last state is kept, in which case memory
does not really actuate. This lack of effect of memory explains the
lower effectiveness of even size �-memories found in the results
presented below.

A FORTRAN code working in double precision has been imple-
mented to perform computations. The core of the code is given
in Table 1. The wiring of the n nodes is encapsulated in a n × n
adjacency matrix named ADJ, so that the iadd variable adds the
states of the nodes linked to the generic node i. Thus, the par-
ity rule is implemented by means of the mod 2 operation on the
iadd variable, generating NEW(i), i.e., �(T+1)

i
. Previously, the MEM-

ORY subroutine implements the itau-majority memory computing.
MEMORY provides the MODE(i) trait states, i.e., s(T)

i
, on which the iadd

is calculated.

2.1. The ˇ = 1 case

Fig. 2 shows the initial evolving patterns of a simulation of the
parity rule on a ˇ = 1 skeleton (or Gabriel maps) with N = 102 nodes

distributed at random in a unit square. Red squares denote node
state values equal one, black squares denote zero state values. The
effect of endowing nodes with memory of the majority of the last
three states is shown at T = 4. The encircled node exemplifies the
initial effect of memory. Dynamics of perturbation spreading looks
unpredictable and quasi-chaotic due to existence of long-range
connections.

Fig. 3 shows the evolution of the changing rate (the Hamming
distance between two consecutive patterns) in 11 different ˇ = 1
simulations based on 1000 nodes distributed at random in a unit
square. The red curves correspond to the ahistoric simulations,
in which case the parity rule exhibits a very high level of chang-
ing rate, oscillating around 0.5. Fig. 3 shows also the effect on the
changing rate of endowing nodes with memory of the last � state
values (blue lines). The inertial effect of memory tends to reduce the
changing rate compared to the ahistoric model, particularly when
ˇ is odd. With high memory charges, such as � = 19 in the lower
left panel, the changing rate tends to vary in the long term in the
[0.1,0.2] interval, after an initial almost-oscillatory behaviour which
ceases by T > � + 1 = 20. With unlimited trailing memory (lower right
panel), this oscillatory pattern is never truncated, so that a rather
unexpected quasi-oscillatory behaviour turns out with full mem-
ory. With no exception, the proportion of node states having one
given state value (density), oscillates near to 0.5 regardless of the
model considered.

Fig. 4 shows the evolution of the damage rate, i.e., the relative
Hamming distance between patterns resulting from reversing the
initial state value of a single node, referred to as damage (or per-
turbation) spreading. The damage propagates very rapidly without
memory (butterfly effect), so that by T = 30 the red curves already
oscillate around 50% of the cells. When memory is introduced to
the system, the spread of damage is depleted, albeit the restrain-
ing effect of memory is very low if the charge of memory is low
(� = 3,4). With higher memory lengths, e.g., � = 9, the depletion in
the advance of the damage becomes apparent, though by T = 150 the
damage rate also reaches the 0.5 level in every simulation in Fig. 4.
Similar evolution of damage is found with higher limited trailing
memories, such as � = 11 and � = 13 (not shown in the figure). On
the contrary case, unlimited trailing memory appears very effective
in the control of damage, as shown in the lower-right panel.

Fig. 4 also shows the relative Hamming distance of the ahistoric
patterns to the corresponding historic ones. After a very short tran-
sition period, this distance reaches a fairly permanent plateau level,
oscillating around 0.5 regardless of the charge of memory endowed.

2.2. A ˇ < 1 case

Fig. 5 shows a simulation up to T = 4 of the parity rule on a ˇ = 0.9
skeleton based on the same nodes and initial states as in Fig. 2.
In correspondence with the lower ˇ value, there are more links
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