
Journal of Computational Science 13 (2016) 37–48

Contents lists available at ScienceDirect

Journal of Computational Science

journa l h om epage: www.elsev ier .com/ locate / jocs

Boosting performance of a Statistical Machine Translation system
using dynamic parallelism

M. Fernández, Juan C. Pichel ∗, José C. Cabaleiro, Tomás F. Pena
Centro Singular de Investigación en Tecnoloxías da Información (CITIUS), Universidade de Santiago de Compostela, Spain

a r t i c l e i n f o

Article history:
Received 27 April 2015
Received in revised form
16 December 2015
Accepted 11 January 2016
Available online 20 January 2016

Keywords:
Machine translation
Parallelism
Performance
Autotuning
Load balance

a b s t r a c t

In this work we introduce a new Statistical Machine Translation (SMT) system whose main objective is
to reduce the translation times exploiting efficiently the computing power of the current processors and
servers. Our system processes each individual job in parallel using different number of cores in such a
way that the level of parallelism for each job changes dynamically according to the load of the translation
server. In addition, the system is able to adapt to the particularities of any hardware platform used as
server thanks to an autotuning module. An exhaustive performance evaluation considering different
scenarios and hardware configurations demonstrates the benefits and flexibility of our proposal.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the modern digital society, we estimate that each day are cre-
ated around 2.5 exabytes of data, in such a way that 90% of the data
all over the world were created just only in the last two years [1].
Most of these data are text information written in languages we do
not (fully) understand. In this way, the role of the Machine Transla-
tion (MT) in the Big Data era becomes even more relevant than years
ago. However, we must take into account that an automatic trans-
lation does not have to be perfect to be useful. Depending on the use
or purpose of the translation the requirements of speed and qual-
ity are different. We distinguish three categories of use of machine
translation [2]: assimilation, the translation of foreign material for
the purpose of understanding the content; dissemination, translat-
ing text for publication in other languages; and communication, for
example the translation of emails, chats, and so on.

Nowadays the Statistical Machine Translation (SMT) dominates
the field of machine translation. Companies like Google or Microsoft
adopted this model for their online translation systems. SMT is an
approach to machine translation that is characterized by the use of
machine learning methods [3]. It is a paradigm where translations

∗ Corresponding author.
E-mail addresses: marcos.fernandez.lopez@usc.es (M. Fernández),

juancarlos.pichel@usc.es (J.C. Pichel), jc.cabaleiro@usc.es (J.C. Cabaleiro),
tf.pena@usc.es (T.F. Pena).

are generated on the basis of statistical models whose parameters
are derived from the analysis of bilingual text (parallel) corpora and
also with monolingual data. From the first ones, the system learns
to translate small segments of text (translation model), and from
the latter it learns how to organize the text to be fluent (language
model). Once trained, an efficient search algorithm quickly finds
the translation with highest probability among a large number of
choices taking into account both translation and language mod-
els. In particular, considering f as the source sentence and e any of
its translations into the target language, the best (most probable)
translation of f is given by the following expression:

ê = arg max
e ∈ E

p(f |e)p(e)

where E is the set of all sentences in the target language, p(f|e) is the
probability that the source sentence is the translation of the target
sentence (translation model), and p(e) is the probability of appear-
ance of that target language sentence (language model). Note that
the main benefits of SMT over traditional rule-based paradigms are
that the engines produce more appropriate and natural sounding
translations, and the technology is not customized to any specific
pair of languages.

It is worth to mention that the larger the corpora used in the
training of a SMT system, the better and more complete trans-
lation tables and language models will be created. This leads to
higher quality translations, but it comes at the cost of a significant
increase in the translation times because of the greater number of

http://dx.doi.org/10.1016/j.jocs.2016.01.003
1877-7503/© 2016 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.jocs.2016.01.003
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jocs.2016.01.003&domain=pdf
mailto:marcos.fernandez.lopez@usc.es
mailto:juancarlos.pichel@usc.es
mailto:jc.cabaleiro@usc.es
mailto:tf.pena@usc.es
dx.doi.org/10.1016/j.jocs.2016.01.003

38 M. Fernández et al. / Journal of Computational Science 13 (2016) 37–48

translation possibilities to be evaluated. Therefore, it is important
for the SMT system to make an efficient use of the hardware to
extract all its computing power. In case the system accepts requests
from different users, as in an online translation system, another
factor that impacts the performance is the load of the translation
server. Translation times will increase dramatically in case the sys-
tem does not distribute the requests in a balanced way. For all
these reasons it is convenient to develop solutions that take advan-
tage of the parallelism capabilities of current computers in order to
improve the overall performance of a SMT system.

In this paper we introduce a new solution for an online SMT
system with the main goal of reducing the translation times explo-
iting efficiently the computing power of the current processors.
With this objective in mind, our system processes the translation
requests in parallel, translating each job using a different number
of cores. We must highlight that the level of parallelism changes
dynamically depending on the load of the server. This decision is
also influenced by the information provided by an autotuning mod-
ule, which allows our system to adapt to the particularities of the
hardware platform beneath. Our translation system is based on
Moses [4], which is probably the most widely used open-source
implementation of the SMT paradigm. A thorough performance
evaluation considering different scenarios shows the benefits and
flexibility of our proposal.

Note that most of the efforts of the SMT community have been
devoted to the research of various statistical methods to construct
language and translation models with higher translation quality.
Only few works have focused on the performance of the translation
systems from a parallelism and/or load balancing perspective. To
the best of our knowledge, none of those proposals present the
characteristics of the SMT system introduced in this work.

The rest of the paper is organized as follows. Section 2 describes
Moses focusing on some of its performance issues that our trans-
lation system should overcome. Section 3 details the architecture
and operation of the new translation system. Section 4 presents
the experiments carried out to evaluate the performance of our
proposal. Section 5 discusses about the related work. Finally, the
main conclusions derived from the work are explained in Section
6.

2. Background on Moses

Moses [4] is one of the most successful open-source implemen-
tation of the Statistical Machine Translation model. Moses consists
of two main components: the training pipeline and the decoder. The
training process uses as input large quantities of parallel text in such
a way that each sentence in the source language is matched with
its corresponding translation in the target language. Data typically
needs to be preprocessed before it is used in training. Once the par-
allel data is ready, Moses uses occurrences of words and segments
to infer translation correspondences between the two languages
considered, building this way a translation model. Another impor-
tant part of the system is the language model, which is a statistical
model created using text in the target language and utilized after-
wards by the decoder to improve the fluency of the output.

The core of Moses is the decoder, whose goal is to find the sen-
tence in the target language with the highest score according to
the translation and language models corresponding to a particular
source sentence. Note that decoding is an enormous search prob-
lem, generally too big for exact search, so Moses provides different
strategies to deal with this search.
Moses presents two modes of execution: Stand-alone and Server

mode. In both cases the input (translation job) must be plain text
and be formatted in a way that Moses can interpret it correctly. For
instance, it should not contain capital letters, punctuation marks

must be separated from any word by a space, etc. In the machine
translation field this process is known as tokenization.

The Stand-alone mode runs directly from command line. It
requires the file to translate (already tokenized) and the path to the
configuration file of Moses, which contains the translation tables,
language model, weights for some parameters, etc. This mode of
execution admits multithreading (adding the flag -threads) [5].
If multithreading is enabled, Moses will use a pool of threads to
translate the paragraphs (translation units/requests) in the input
file.

The Server mode adds the possibility of running the translation
engine as a process that listens to XML-RPC requests. XML-RPC is
a remote procedure call protocol which uses XML to encode its
requests and HTTP as transport mechanism. Therefore, it can attend
translation requests from distributed clients written in any pro-
gramming language with support for XML-RPC libraries. As the goal
of our work is to develop an efficient online SMT service, we must
highlight that our system is based on the operation of Moses in
Server mode.

In this mode of execution, several translation jobs reaching
the server at the same time are translated in a parallel way by
default. However, there is a significant difference between the
parallel processing used by Moses Server and Stand-alone. In partic-
ular, Moses Stand-alone automatically distributes the paragraphs
(translation units) of an input file (translation job) among several
threads (if the threads option is enabled). However, a single job
is always processed sequentially in Moses Server, that is, dealing
with one translation unit at a time and using only one thread. It
means that a large translation job (a book, for example) will not
take advantage of the parallel capabilities of the computer even
when this is the only job running on the system. Consequently,
Moses Server only ensures the maximum use of the computational
resources when the number of simultaneous jobs sent by clients
is at least equal to the number of cores available in the transla-
tion server. If we want to take advantage of the parallel processing
power of the server, as we will explain in Section 3, the job must
be preprocessed in order to split it up into several translation units
(sentences, paragraphs, etc.) with the aim of sending them concur-
rently as different translation requests.

2.1. Additional limitations of Moses Server

Moses uses translation caches to store useful information that
can be reused for future translations, speeding up the translation
process. The way these caches are managed has changed in version
2.1 (released on January, 2014), which is the version considered in
this work. Previous versions of Moses used a global cache for all the
threads, so the utilization of expensive (in terms of performance)
locks was mandatory to have access to it. In versions 2.1.x, Moses
uses a distinct translation cache for each thread, so these locks are
not needed anymore. This behavior improves the performance of
Stand-alone Moses, but it affects badly to Moses Server.

As Moses uses per-thread caches, the reason of this bad behavior
is related to how Moses Server handle threads. In particular, Moses
Server attends each translation request using a new thread that is
destroyed after completion, thus losing all the information stored
in the cache. However, in Stand-alone mode a pool of threads is
created in such a way that threads processing a job are always the
same ones. In this way, those threads can maintain useful informa-
tion in the caches and take advantage of it for each translation unit
they have to process.

After several tests we have observed that, when Stand-alone
mode is considered, the best performance is generally obtained
using individual sentences as translation units. However, the
problem detailed above about Moses Server and the thread
caches entails that for versions 2.1.x, perhaps sending requests

Download English Version:

https://daneshyari.com/en/article/429481

Download Persian Version:

https://daneshyari.com/article/429481

Daneshyari.com

https://daneshyari.com/en/article/429481
https://daneshyari.com/article/429481
https://daneshyari.com

