
Journal of Computer and System Sciences 81 (2015) 1542–1555

Contents lists available at ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

Task partitioning and priority assignment for distributed hard 

real-time systems ✩

Ricardo Garibay-Martínez ∗, Geoffrey Nelissen, Luis Lino Ferreira, 
Luís Miguel Pinho

CISTER/INESC-TEC Research Centre, ISEP/IPP, Rua Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal

a r t i c l e i n f o a b s t r a c t

Article history:
Received 21 July 2014
Received in revised form 29 March 2015
Accepted 5 May 2015
Available online 17 June 2015

Keywords:
Real-time
Distributed systems
Task allocation
Priority assignment
Intermediate deadlines
Holistic analysis
Multi-threaded parallel tasks

In this paper, we propose the Distributed using Optimal Priority Assignment (DOPA) heuris-
tic that finds a feasible partitioning and priority assignment for distributed applications 
based on the linear transactional model. DOPA partitions the tasks and messages in the 
distributed system, and makes use of the Optimal Priority Assignment (OPA) algorithm 
known as Audsley’s algorithm, to find the priorities for that partition. The experimen-
tal results show how the use of the OPA algorithm increases in average the number of 
schedulable tasks and messages in a distributed system when compared to the use of 
Deadline Monotonic (DM) usually favoured in other works. Afterwards, we extend these 
results to the assignment of Parallel/Distributed applications and present a second heuris-
tic named Parallel-DOPA (P-DOPA). In that case, we show how the partitioning process can 
be simplified by using the Distributed Stretch Transformation (DST), a parallel transaction 
transformation algorithm introduced in [1].

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Modern distributed real-time systems range from safety critical to entertainment and domestic applications, presenting 
a very diverse set of requirements. Although diverse, in all these areas, distributed applications are becoming larger and 
more complex. Furthermore, such complex applications require the use of more powerful hardware and software architec-
tures in order to comply with their stringent time constraints. The use of multi-threaded parallel processing has emerged 
as a promising solution for providing extra computing power to such demanding real-time applications. Therefore, the 
real-time community has been making efforts to extend traditional real-time tools and scheduling algorithms to consider 
multi-threaded parallel task models [2–5] for multi-core systems.

However, in some distributed applications, the use of powerful enough multi-core processors is impossible due to Size, 
Weight, and Power (SWaP) constraints. But it is also possible to comply with the requirements of such computational-
intensive applications by aggregating a set of embedded devices connected through an interconnection network and coop-
erating to achieve a common goal [1].

Modern cars are a very good example for such type of distributed systems [6,7]. They are composed of tens of com-
puting nodes interconnected by various types of communication networks. The complexity of their workload never stops 

✩ Paper related to the special issue derived from REACTION 2013 workshop “Real-time and Distributed Computing in Emerging Applications” organized 
by M. García-Valls and T. Cucinotta.

* Corresponding author.
E-mail addresses: rgmaz@isep.ipp.pt (R. Garibay-Martínez), grrpn@isep.ipp.pt (G. Nelissen), llf@isep.ipp.pt (L.L. Ferreira), lmp@isep.ipp.pt (L.M. Pinho).

http://dx.doi.org/10.1016/j.jcss.2015.05.005
0022-0000/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jcss.2015.05.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
mailto:rgmaz@isep.ipp.pt
mailto:grrpn@isep.ipp.pt
mailto:llf@isep.ipp.pt
mailto:lmp@isep.ipp.pt
http://dx.doi.org/10.1016/j.jcss.2015.05.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcss.2015.05.005&domain=pdf


R. Garibay-Martínez et al. / Journal of Computer and System Sciences 81 (2015) 1542–1555 1543

to increase, implying that many of their applications would gain in flexibility if they were parallelised and distributed over 
the system. Other examples of emerging applications are the self-localisation of autonomous vehicles [8] or collaborative 
robotic applications where dynamic workloads can be parallelised and distributed over different robots for the generation of 
a real-time 3D map [9]. In such applications, it may be required to allow networked processors to parallelise and distribute 
their workloads on peak situations, in order to respect their timing requirements. The fork-join Parallel/Distributed real-time 
model [1], which is studied in this paper, was designed to consider such execution patterns.

For a given set of applications and a given computing platform, the main challenge addressed in this work is to find a 
feasible allocation for tasks and messages in a way that all applications end-to-end deadlines are met. Unfortunately, this 
problem is known to be NP-hard [10]. Furthermore, the problem of task allocation can be viewed as a two-sided problem: 
(i) finding the partitioning of tasks and messages onto the processing elements of the distributed system, and (ii) finding 
the priority assignment for tasks and messages in that partition so that the real-time applications complete their execution 
within their deadline. Those two sub-problems are strongly interrelated as the decision of assigning a task to a given node 
should depend on the priorities of the other tasks already assigned to that node. Conversely, the priorities of tasks executing 
on a node might need to be adapted if new tasks are later added to that node. Therefore, a careful trade-off between the 
solutions of these two sub-problems needs to be taken in order to obtain an efficient global solution.

Contribution. In this paper, we first present the Distributed using Optimal Priority Assignment (DOPA) heuristic (of which 
a preliminary proposal can be found in [11]) that finds a feasible partitioning and priority assignment for distributed applica-
tions based on the linear transactional model. We then extend DOPA for the assignment of Parallel/Distributed applications 
and present a second heuristic called Parallel-DOPA (P-DOPA). Both DOPA and P-DOPA partition the tasks and messages 
in the distributed system, and make use of the Optimal Priority Assignment (OPA) algorithm, known as Audsley’s algo-
rithm [12], to find the priorities of tasks for that partition. However, the OPA algorithm requires tasks to be independent, 
therefore, in order to use the OPA algorithm for task sets with dependencies; we first need to transform tasks with de-
pendencies to a set of independent tasks by imposing artificial intermediate deadlines. Two different methods for adding 
intermediate deadlines are presented in the paper: one for linear and one for parallel applications.

Structure of the paper. Section 2 presents the related work, whilst Section 3 introduces the system model. Section 4
describes the DOPA heuristic for the linear transactional model which is evaluated through simulations in Section 4.3. The 
P-DOPA heuristic for the Parallel/Distributed model is described in Section 5 and its evaluation is shown in Section 5.4. 
Finally, in Section 6 we draw our conclusions.

2. Related work

In this section, we review some relevant works related to the problem of allocating sequential tasks and messages in dis-
tributed systems. Also, we review some works related to multi-threaded parallel task scheduling for multi-core systems and 
distributed systems. Nevertheless, in both cases, we focus our attention to the case of pre-emptive fixed-priority scheduling.

The problem of allocating sequential tasks in distributed systems is usually divided in two sub-problems: (i) finding the 
partitioning of tasks and messages onto the elements of the distributed system (processors and networks, respectively), 
and (ii) finding the priority assignment for that partitioning. For example, Tindell et al. [13] addressed these issues as 
an optimisation problem, solving it with the general purpose Simulated Annealing algorithm. The Simulated Annealing 
algorithm is used for iterating in a random manner over a given allocation, and performs an evaluation based on an “energy 
function” that measures the quality of the encountered solution (allocation). Tindell et al. [13] used the Deadline Monotonic 
(DM) scheduling algorithm [14] to assign priorities to tasks.

In [15], Gutierrez et al., proposed an optimisation technique that assumes a set of tasks and messages that are statically 
allocated to processors and networks (therefore, no partitioning phase is considered); thus, focusing on the problem of 
assigning priorities to the allocated tasks and messages. Their method is based on imposing artificial intermediate deadlines 
to the tasks and messages and then using DM to assign the task priorities.

Richard et al. [16] proposed a solution based on branch-and-bound; enumerating the possible paths that can lead to an 
allocation, and cutting the path whenever a feasible schedule cannot be reached by following such a task assignment. Again, 
DM is used to assign the priorities assuming that each task is defined by its own deadline and period. The bounding step is 
performed by checking the schedulability of each branch, based on the schedulability analysis derived by Tindell et al. [17].

In [18] and [19], the authors model the task partitioning problem as an optimisation problem. However, this work still 
assumes that each task has its own period and deadline, and it uses DM to assign priorities.

Azketa et al. [20] addressed this problem by using general purpose genetic algorithms. They use a genetic algorithm with 
a permutational solution encoding. They initiate their genetic algorithm by assigning priorities using the HOPA heuristic [15]
which is based on DM priority assignment [14] and iterate over different solutions by applying crossover, mutation and 
clustering operations. To test schedulability they use the holistic analysis presented in [17,21,22].

Research related to multi-threaded parallel fixed-priority real-time tasks has targeted mostly multi-core architectures; of 
interest to this work, in Lakshmanan et al. [2], the authors introduced the Task Stretch Transformation (TST) model for fork-
join parallel synchronous tasks. The TST considers fork-join pre-emptive fixed-priority periodic tasks with implicit deadlines. 
The fork-join structure is transformed into a sequential structure, and the set of sequential fixed-priority tasks remaining af-
ter the transformation are partitioned according to the Fisher–Baruah–Baker First-Fit-Decreasing (FBB-FFD) [23] partitioning 
algorithm. The authors proved that the TST has a resource augmentation bound of 3.42. The resource augmentation bound 



Download English Version:

https://daneshyari.com/en/article/429509

Download Persian Version:

https://daneshyari.com/article/429509

Daneshyari.com

https://daneshyari.com/en/article/429509
https://daneshyari.com/article/429509
https://daneshyari.com

