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Pancake Flipping is the problem of sorting a stack of pancakes of different sizes (that is, 
a permutation), when the only allowed operation is to insert a spatula anywhere in the 
stack and to flip the pancakes above it (that is, to perform a prefix reversal). In the burnt 
variant, one side of each pancake is marked as burnt, and it is required to finish with all 
pancakes having the burnt side down. Computing the optimal scenario for any stack of 
pancakes and determining the worst-case stack for any stack size have been challenges 
for over more than three decades. Beyond being an intriguing combinatorial problem in 
itself, it also yields applications, e.g. in parallel computing and computational biology. In 
this paper, we show that the Pancake Flipping problem, in its original (unburnt) variant, is
NP-hard, thus answering the long-standing question of its computational complexity.

© 2015 Published by Elsevier Inc.

1. Introduction

The pancake problem was stated in [10] as follows:

The chef in our place is sloppy, and when he prepares a stack of pancakes they come out all different sizes. Therefore, 
when I deliver them to a customer, on the way to the table I rearrange them (so that the smallest winds up on top, 
and so on, down to the largest at the bottom) by grabbing several from the top and flipping them over, repeating this 
(varying the number I flip) as many times as necessary. If there are n pancakes, what is the maximum number of flips 
(as a function of n) that I will ever have to use to rearrange them?

Stacks of pancakes are represented by permutations, and a flip consists in reversing a prefix of any length. The previous 
puzzle yields two entangled problems:

• Designing an algorithm that sorts any permutation with a minimum number of flips (this optimization problem is called 
MIN-SBPR, for Sorting By Prefix Reversals).

• Computing f (n), the maximum number of flips required to sort a permutation of size n (the diameter of the so-called 
pancake network).

✩ A preliminary version of this article appeared in the proceedings of the 37th International Symposium on Mathematical Foundations of Computer 
Science (MFCS 2012) [6].
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Gates and Papadimitriou [12] introduced the burnt variant of the problem: the pancakes are two-sided, and an additional 
constraint requires the pancakes to end with the unburnt side up. The diameter of the corresponding burnt pancake network
is denoted g(n). A number of studies [7–9,12,15–17] have aimed at determining more precisely the values of f (n) and g(n), 
with the following results:

• f (n) and g(n) are known exactly for n ≤ 19 and n ≤ 17, respectively [8].
• 15n/14 ≤ f (n) ≤ 18n/11 + O (1) [16,7].
• �(3n + 3)/2� ≤ g(n) ≤ 2n − 6 [8] (upper bound for n ≥ 16).

Considering MIN-SBPR, 2-approximation algorithms have been designed, both for the burnt and unburnt variants [9,11]. 
Moreover, Labarre and Cibulka [17] have characterized a subclass of signed permutations, called simple permutations, that 
can be sorted in polynomial time.

The pancake problems have various motivations. For instance, the pancake network, having both a small degree and 
diameter, is of interest in parallel computing [1,19,18]. A more distant motivation concerns a variant of the problem, called 
Sorting By Reversals [2,3], which has applications in comparative genomics. In Sorting By Reversals, any subsequence can be 
flipped at any step (not only prefixes), and reversals are possible elementary modifications that can affect a genome during 
evolution. The Sorting By Reversals problem is now well-known, with a polynomial-time exact algorithm [13,14] for the 
signed case, and a 1.375-approximation [4] for the APX-hard unsigned case [5]. Although prefix reversals are less realistic, 
any improvement in this setting may have some impact on the more general Sorting By Reversals problem.

In this paper, we prove that the MIN-SBPR problem is NP-hard (in its unburnt variant), thus answering a question which 
has remained open for several decades. We in fact prove a stronger result: it is known that the number of breakpoints 
of a permutation (that is, the number of pairs of consecutive elements that are not consecutive in the identity) is a lower 
bound on the number of flips necessary to sort a permutation. We show that deciding whether this bound is tight is already
NP-hard.

2. Notations

We denote by �a ; b� the interval {a, a + 1, . . . , b} (for b < a, we have �a ; b� = ∅). Let n be an integer. Input sequences 
are permutations of �1 ; n�, that is we consider only sequences where all elements are unsigned, and there cannot be 
duplicates. When there is no ambiguity, we use the same notation for a sequence and the set of elements it contains. We 
use upper case letters for sets and sequences, and lower case letters for elements.

Consider a sequence S of length n, S = 〈
x1, x2, . . . , xn

〉
. Element x1 is said to be the head element of S . Sequence S has 

a breakpoint at position r, 1 ≤ r < n if xr /∈ {xr+1 − 1, xr+1 + 1}, and a breakpoint at position n if xn �= n. We write db(S)

the number of breakpoints of S . Note that having x1 �= 1 does not directly count as a breakpoint, and that db(S) ≤ n for 
any sequence of length n. For any p ≤ q ∈ N, we write I p

q the sequence 
〈
p, p + 1, p + 2, . . . , q

〉
; I1

n is the identity. For 
a sequence of any length S = 〈

x1, x2, . . . , xk
〉
, we write �S the sequence obtained by reversing S: �S = 〈

xk, xk−1, . . . , x1
〉
. 

Given an integer p, we write p + S = 〈
p + x1, p + x2, . . . , p + xk

〉
.

The flip of length r is the operation that consists in reversing the r first elements of the sequence. It transforms

S = 〈
x1, x2, . . . , xr, xr+1, . . . , xn

〉
into S ′ = 〈

xr, xr−1, . . . , x1, xr+1, . . . , xn
〉
.

Note that the flip of length 1 does not modify S , and the flip of length n transforms S into �S . Moreover, since a flip of 
length r cannot add or remove breakpoints other than in position r, we have the following easy property.

Property 1. Given a sequence S ′ obtained from a sequence S by performing one flip, we have db(S ′) − db(S) ∈ {−1, 0, 1}.

A flip from S to S ′ is said to be efficient if db(S ′) = db(S) − 1, and we reserve the notation S → S ′ for such flips. A se-
quence of size n, different from the identity, is a deadlock if it yields no efficient flip, and we write S → ⊥. By convention, 
we place a specific separator •

∣∣ in a sequence at the positions corresponding to possible efficient flips: there are at most 
two of them, and at least one if the sequence is neither a deadlock nor the identity. A path is a series of flips, it is efficient
if each flip it contains is efficient. A sequence S is efficiently sortable if there exists an efficient path from S to the identity 
(equivalently, if it can be sorted in db(S) flips). See for example Fig. 1.

Let S be a sequence different from the identity, and T be a set of sequences. We write S �⇒ T if both following 
conditions are satisfied:

1. for each T ∈ T, there exists an efficient path from S to T .
2. for each efficient path from S to the identity, there exists a sequence T ∈ T such that the path goes through T .
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