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We prove that finite-state transducers with injective behavior, deterministic or not, real-
time or not, with no extra memory or a single counter, cannot compress any normal word. 
We exhaust all combinations of determinism, real-time, and additional memory in the form 
of counters or stacks, identifying which models can compress normal words. The case of 
deterministic push-down transducers is the only one still open. We also present results on 
the preservation of normality by selection with finite automata. Complementing Agafonov’s 
theorem for prefix selection, we show that suffix selection preserves normality. However, 
there are simple two-sided selection rules that do not.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let us recall the definition of normality for real numbers, given by Émile Borel [4] more than one hundred years ago. 
A real number is normal to an integer base if, in its infinite expansion expressed in that base, all blocks of digits of the same 
length have the same limiting frequency. Borel proved that almost all real numbers are normal to all integer bases. However, 
very little is known on how to prove that a given number has the property. The problem of proving normality to just one 
base does not seem easier, see Bugeaud’s book [6]. This is a motivation to investigate different equivalent definitions of 
normality and different operations that preserve it.

The present work deals with the characterization and the preservation of normality by means of operations done by 
finite automata. For this, given an integer base b, greater than or equal to 2, we consider the alphabet consisting of the 
digits 0, 1, . . . , b − 1. We regard the expansion of a real number expressed in base b as a sequence of symbols in this 
alphabet, or, as we shall call it, an infinite word. This determines the notion of normality for infinite words.

A fundamental theorem relates normality and finite automata: an infinite word is normal to a given alphabet if and only 
if it cannot be compressed by lossless finite transducers. These are deterministic finite automata with injective input–output 
behavior. This result was first obtained by joining a theorem by Schnorr and Stimm [17] with a theorem by Dai, Lathrop, 
Lutz and Mayordomo [10]. Becher and Heiber gave a direct proof [3].

What is the true computational power needed to compress normal words? Of course, each computable normal word 
is compressible by some Turing machine. For instance, consider Champernowne’s construction [9]. Since automata with 
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Table 1
Compressibility of normal infinite words by different kinds of transducers.

Finite-state transducer Deterministic Non-deterministic Non-real-time

No extra memory Not compress 
(Theorem 2.3)

Not compress 
(Theorem 4.1)

Not compress 
(Corollary 4.4)

One counter Not compress Not compress Not compress 
(Theorem 5.2)

More than one counter Not compress 
(Theorem 3.1)

Not compress 
(Corollary 5.1)

Compress 
(Turing complete)

One stack ? Compress 
(Theorem 6.1)

Compress

One stack and one counter Compress 
(Theorem 6.2)

Compress Compress 
(Turing complete)

enough computational power are equivalent to a Turing machine, to answer the question we ought to start with the most 
elementary type of automata, which are finite-state automata, and consider different enhancements. Here we analyze de-
terministic, non-deterministic real-time and non-real-time transition functions; having zero, one, or more counters; with or 
without a stack.

Whether deterministic or non-deterministic machines have the same computational power is a fundamental question 
in theoretical computer science. Here we address it with respect to the ability of compressing normal words. Recall that 
although deterministic and non-deterministic finite automata recognize the same rational sets, deterministic Büchi automata 
are strictly less expressive than the non-deterministic ones (see Perrin and Pin’s book [15]). It is not always possible to 
determinize a Büchi automaton to recognize the same set of infinite words (it is only possible as a Muller automaton). 
Furthermore, functions and relations realized by deterministic transducers are proper subclasses of rational functions and 
relations realized by non-deterministic ones [2].

Here we prove that finite transducers with injective behavior, even non-deterministic non-real-time ones, but with no 
extra memory or just a single counter, cannot compress any normal infinite word. Adding memory yields compressibility 
results: there are non-deterministic non-real-time transducers with more than one counter that compress some normal 
infinite words. Also there are non-deterministic real-time transducers with a stack that can do it.

Table 1 summarizes the results we obtain about compressibility of normal infinite words by different kinds of trans-
ducers. The columns represent different levels of restrictions on the transitions. The first column represents determinism, 
that is, there is exactly one transition leaving a given state by reading a given symbol. The second column represents non-
determinism, there are several transitions leaving a given state by reading the same symbol. The restriction represented in 
the third column adds the possibility of also having transitions that do not read any symbol (usually called λ-transitions). 
The rows of the table represent different memory models. In all cases there is bounded memory represented by states. Each 
row details possible additions of counters or stacks. The realized relation is assumed to be bounded-to-one. The case of a 
deterministic transducers with a single stack remains open:

Open question. Can any deterministic push-down transducer compress a normal word?

In the present paper, we consider transducers that process the input word from left to right without coming back. 
These are called one-way transducers. In contrast, two-way transducers can move their reading head back and forth. They 
have been investigated with regards to normality by Carton and Heiber in [7] where it is shown that these more powerful 
transducers still cannot compress normal words.

We also obtain new results on the preservation of normality by selection. A celebrated theorem by Agafonov describes 
an operation by a finite automaton that selects symbols from an infinite word by looking at its prefixes and by recogniz-
ing those that belong to a rational set. In case the word is normal, the word obtained by the selected symbols is normal 
as well. Agafonov published it in 1968 [1], but unfortunately the proof there depends on work only available in the Rus-
sian literature. Schnorr and Stimm [17] proved a generalization of the theorem. M. O’Connor [14] gave another proof of 
Agafonov’s result using automata predictors, and Broglio and Liardet [5] generalized it to arbitrary alphabets. Becher and 
Heiber [3] wrote an alternative proof using the characterization of normality in terms of incompressibility. It is known that 
Agafonov’s theorem fails for slightly more powerful selection. Merkle and Reimann [12] showed that normality is preserved 
neither by deterministic one-counter sets (recognized by deterministic one-counter automata) nor by linear sets (recognized 
by one-turn pushdown automata).

Here we complement Agafonov’s theorem and we show that selection based on suffixes, as opposed to prefixes, also 
preserves normality. However, there are simple two-sided selection rules that do not preserve normality and we exhibit one. 
These results are proved in Theorems 7.2 and 7.3.



Download English Version:

https://daneshyari.com/en/article/429512

Download Persian Version:

https://daneshyari.com/article/429512

Daneshyari.com

https://daneshyari.com/en/article/429512
https://daneshyari.com/article/429512
https://daneshyari.com

