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a  b  s  t  r  a  c  t

We  demonstrate  a  recursive  computational  procedure  based  on  the  distributions  of  first  passage  time
on Markov  Chains  that can  mathematically  characterize  noise-driven  processes  in complex  networks.
Considering  examples  of both  real  (Enron  email)  and  artificial  (Ravasz-Barabasi)  networks  perturbed  by
noise using  Monte  Carlo  simulations,  our method  accurately  recovers  the percentages  that  information
will  be  transferred  to  the intended  receivers.  The paradigm  reported  here  captures  and  provides  expla-
nation  to the  recent  results  of  Czaplicka  et al.  (Nature  Sci.  Rep.  2013)  showing  that  the  presence  of  noise
can  actually  enhance  the  transfer  of  information  in a hierarchical  complex  network.  Finally,  we  illustrate
how  adaptive  thresholding  guided  by  our  developed  procedure  can  be used  to  engineer  or  shape  the
dynamic  range  of networks  operating  in  a  noisy  environment.

© 2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

There has been a surge in interest in the field of complex
networks in the recent years particularly after the discoveries made
by Watts and Strogatz on the nature of small world networks [1] as
well as Albert and Barabasi [2] in the characterization of how the
topology of scale-free networks evolves. In particular, the role of
complex networks as systems for information processing and trans-
fer has also been investigated and applied to both artificial [3–5]
and real networks [6,4]. The field of random walks on networks,
specifically on how passage times are affected by different topolo-
gies, have also gained much interest in the recent years, even
though the study of random walks and Markov Chains on regular
networks have been studied for decades [7].

The applications of passage times are varied, ranging from
search applications in the web [8], to diffusion reactions [9] as well
as models of biological pathways for protein folding [10]. Previ-
ously, Condamin et al. [11] found that random walk passage times
on scale-free networks can be compared to that of regular networks
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by using an alternative fractal dimension of the network. Lau et al.
[12] demonstrated that the distribution of first passage time can
be obtained using asymptotic analysis and Hwang et al. [13] also
showed that in scale-free networks, the global mean passage time
showed different scaling behaviors depending on both their spec-
tral dimension and their scale-free degree exponent. However,
these analyses are only applicable for the specific case of unbiased
random walk with uniform probability of transition. In the case of
the biased random walk, Fronczak et al. [14] analyzed the perfor-
mance of mean passage time of a type of biased random walk which
favored high degree nodes and concluded that the passage time for
specific sender-receiver node pairs depended highly on the degree
of the final target node. A biased random walk was  also shown by
Zlatic et al. [15] to be capable of detecting various communities
within the network.

In a recent paper, Czaplicka et al. showed [16] that the addition
of noise into an information transmission system based around the
topology of a hierarchical network could enhance the efficiency of
the network. This differs from the analysis previously done by Fron-
czak et al. since it incorporates topological noise that randomly
causes edges to be rewired to different nodes. The combination
of topological noise and random packet movement was  shown
to give rise to a resonance like effect when their parameters are
being manipulated. This stochastic resonance-like effect [17,18]

http://dx.doi.org/10.1016/j.jocs.2014.08.002
1877-7503/© 2014 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.jocs.2014.08.002
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jocs.2014.08.002&domain=pdf
mailto:monterolac@ihpc.a-star.edu.sg
mailto:cmonterola@gmail.com
dx.doi.org/10.1016/j.jocs.2014.08.002


852 M.A. Ramli, C.P. Monterola / Journal of Computational Science 5 (2014) 851–860

is expected to generate profound interest as the applications are
wide-ranging. For example, it could be shown the addition of ran-
dom noise could in fact improve the efficiency of search algorithms
in the dynamically changing World Wide Web  [19], enhance chem-
ical reactions in metabolic networks [20] or enhance the rate of
information spread on fast growing social networks. [21]

In this paper, we demonstrate that the system described by
Czaplicka et al. [16] using Monte Carlo simulation can in fact be
treated as a biased random walk on a lattice which can be math-
ematically handled using Markov Chains. The advantage of using
Markov Chain based analysis is that it yields an exact result when
computed as compared to Monte Carlo which translates to:

(1) Removal of the need to randomise the packet movement thus
allowing incorporation of the packet noise into the numerical
calculations;

(2) Possible removal of the need to randomise the edge rewiring
which scales with the number of edges in the network; and

(3) Straightforward discernment of the behaviour of packets mov-
ing from selected sender receiver pairs.

In contrast with the methods demonstrated by Condamin et al.
[11] (using pseudo Green’s function) as well as Lau et al. [12]
(considering the degree of the destination node and using asymp-
totic analysis), the method we formulated here applies to any
kind of biased random walk which have unequal transition prob-
abilities and any kind of network with known adjacency matrix.
Furthermore, Markov Chain analysis allows us to clearly discern the
mechanism through which the stochastic resonance-effect arises
and conduct analysis of the distinct sender-receiver pairs generated
in the network, a procedure that is computationally expensive and
less accurate if attempted through Monte Carlo simulation. We  fur-
ther extend the discussion to describe how the procedure that we
developed can be used to engineer the dynamic range of networks
in a noisy environment via adaptive thresholding.

The paper is divided as follows: Section 2 provides a detailed
description of the packet navigation algorithm being analysed. Sec-
tion 3 describes the recursive computational procedure based on
Markov Chains that we developed and briefly compares the com-
putational complexity between the procedure with that of a similar
procedure using Monte Carlo simulations. Section 4 discusses the
results obtained from this Markov Chain analysis in networks
exposed to varying noise. Section 5 illustrates an application of
adaptive thresholding that is able to engineer the required per-
formance for information transfer for different noise levels. Finally,
Section 6 provides a summary of the findings and concludes the
paper.

2. Packet navigation algorithm

In this section, we describe the packet navigation algorithm
introduced by Czaplicka et al. [16] that we will be analysing
throughout this paper. At the start of packet transmission, the
set of nodes (V) in the network G(V, E) are divided into vari-
ous communities. Nodes within the community are understood
to have a higher probability of having closer proximity to one
another and we  denote the set of nodes that are in the same
community as the sender node r as cr. Np packets containing infor-
mation is subsequently transmitted through a network G(V, E).
Each packet is randomly assigned a sender s and receiver r node
within the network and move across the network in the following
manner:

1 Definition of terms;
2 Given a packet is currently at node i at time t;
3  q ∈ [0, 1] is a random probability value;
4  N(i) is the set of nodes directly connected to i;
5 cr is the set of nodes in the community of receiver r and;
6 Tmax is the threshold time for each packet to complete the delivery.;
7  Packet navigation algorithm;
8  While t ≤ Tmax do
9  if i = r then
10 goto 22;
11 if r ∈ N(i) then
12 packet has probability (1 − q) to move to r and goto 22;
13  otherwise goto 14;
14 if cr∩ N(i) /= ∅ then
15 packet has probability (1 − q) to move randomly to any node in cr ,

increment t and and goto 8;
16 otherwise goto 17;
17 else
18 packet moves randomly to a node in N(i);
19 increment t and goto 8;
20 end
21 end
22 if i = r then
23 record delivery time T = t
24 else
25 packet delivery failed
26 end

The probability q illustrated here acts as packet noise, a larger
value of q essentially increases the randomness of the packet move-
ment and decreases the likelihood of packets moving directly to the
receiver node or to nearby community nodes.

The system is now subjected to a second type of noise, topolog-
ical noise denoted as p. Topological noise is added in this manner;
each edge in E is given a probability p ∈ [0, 1] to be rewired to a dif-
ferent target node. The resulting modified graph G′ = (V, E′) would
therefore have a different structure from that of G. Importantly,
the community information cr is not updated to account for the
new community structure. This results in a mismatch between the
information possessed by the packets and the actual structure of
G′, and consequently, packets could preferably move to dummy
community nodes which may  not lead them closer to r.

The transmission efficiency of packet transmission system could
subsequently measured using the following 2 metrics:

(a) P % − Nsuccess/Np - the percentage of packets transmitted that
successfully arrive at their respective receiver nodes within the
threshold time, Tmax.

(b) Tinv = 1/Np
∑

Np
1/T - the mean of the inverse time taken for

each packet to arrive at its receiver node. Note that if the packet
delivery failed, we set T =∞, that is 1/T = 0.

3. Recursive computation of packet navigation algorithm
using Markov Chain analysis

For the case q = 1, i.e. maximum packet noise, we noted that the
described procedure is a simple random walk on a network with
equal transition probabilities of moving to neighboring nodes. For
all other cases where 0 ≤ q < 1, the packet movement is a biased
random walk with higher probabilities of moving towards r or any
of its community nodes.

The location of each packet at time t can therefore be rep-
resented by the states of a Markov Chain. The measured packet
delivery time T is therefore a random variable known in Markov
Chain literature as the first passage time (FPT) between the sender
and receiver nodes and the mean first passage time (MFPT) is the
FPT averaged over a large number of packets. The averaged value
of MFPT for all the possible combinations of s and r is also known
as the global mean first passage time (GMFPT)[22] of the net-
work and indeed the performance of these parameters have been
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