
Journal of Computational Science 5 (2014) 882–890

Contents lists available at ScienceDirect

Journal of Computational Science

j ourna l h om epage: www.elsev ier .com/ locate / jocs

On the definition of a computational fluid dynamic solver using
cellular discrete-event simulation

Michael Van Schyndela, Gabriel A. Wainera,∗, Rhys Goldsteinb, Jeremy P.M. Mogkb,
Azam Khanb

a Department of Systems & Computer Engineering, Carleton University, Center for Visualization and Simulation (VSIM), Ottawa, ON, Canada
b Autodesk Research Toronto, ON, Canada

a r t i c l e i n f o

Article history:
Received 30 October 2013
Received in revised form 1 May 2014
Accepted 1 June 2014
Available online 9 June 2014

Keywords:
Computational fluid dynamics
Cellular Automata
Discrete event system
Biomechanical simulations

a b s t r a c t

The Discrete Event System Specification (DEVS) has rarely been applied to the physics of motion. To
explore the formalism’s potential contribution to these applications, we need to investigate the definition
of moving gases, liquids, rigid bodies, and deformable solids. Here, we show how to use Cell-DEVS to
analyze the movement and interactions of fluids using computational fluid dynamics (CFD). We describe
a set of rules that produce the same patterns as traditional CFD implementations. We present the inner
workings of the CFD algorithm, the incorporation of solid barriers, and the adoption of variable time steps
within the context of biomechanical simulations.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction and motivation

The Discrete Event System Specification (DEVS) formalism,
described in [1], has two properties that facilitate a scalable
approach to simulation development. First, DEVS has been shown
to be exceptionally general when compared with other modeling
formalisms [2], allowing it to be applied to a wide range of simu-
lation methods. Second, multiple DEVS models are easily coupled
to represent more complex systems, even if the component mod-
els exhibit different time advancement patterns. A key principle of
DEVS is that a model, the computer code which pertains to a specific
real-world system, is separated from the simulator, the computer
program which advances time.

Although there are numerous applications of DEVS to artificial
systems, environmental systems, and both biological and physical
processes, the formalism is rarely applied to the physics of motion
in two or three spatial dimensions. Simulations involving mov-
ing gases, liquids, rigid bodies, deformable solids, or a mixture of
substances are usually implemented using traditional simulation
techniques. Moreover, the timestep is generally fixed, and there is

∗ Corresponding author. Tel.: +1 6135202600.
E-mail addresses: mvschynd@connect.carleton.ca (M. Van Schyndel),

gwainer@sce.carleton.ca (G.A. Wainer), rhys.goldstein@autodesk.com
(R. Goldstein), jeremy.mogk@autodesk.com (J.P.M. Mogk),
azam.khan@autodesk.com (A. Khan).

typically no separation between model and simulator. The primary
rationale for DEVS-based models of 2D and 3D solids and fluids in
motion is the ease with which DEVS-based models can be coupled
with one another. For example, researchers and engineers in the
field of biomechanics could simulate an implanted medical device
by coupling a DEVS model of the device with another DEVS model of
the surrounding tissue. Another benefit of DEVS is the formalism’s
support of different time advancement patterns. For example, the
medical device model might be based on an event-driven approach,
whereas the tissue model might use either fixed time steps or time
steps that shorten in response to fast motion.

Here we apply DEVS to Computational Fluid Dynamics (CFD),
the numerical methods and algorithms which solve and ana-
lyze the movement and interactions of fluid flows [3]. In general,
no analytical solution exists for non-linear fluid models; hence,
the numerical approximation methods, also called “computational
models,” become important. One promising theoretical approach
toward resolving CFD-specific problems is the adoption of discrete-
event methodologies. CFD Solvers are required to process problems
comprised of a large number of computations, which makes the
use of computer-based approaches inevitable. In computerized
processing of CFD, a boundary for the problem is defined, and
the environment is divided into a cellular space in which each
cell represents a physical volume. Motion within the defined envi-
ronment evolves in accordance with the fundamental principles
of mass, momentum, and energy conservation. The behavior of
the fluid at the boundaries is also defined, termed the boundary

http://dx.doi.org/10.1016/j.jocs.2014.06.001
1877-7503/© 2014 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.jocs.2014.06.001
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jocs.2014.06.001&domain=pdf
mailto:mvschynd@connect.carleton.ca
mailto:gwainer@sce.carleton.ca
mailto:rhys.goldstein@autodesk.com
mailto:jeremy.mogk@autodesk.com
mailto:azam.khan@autodesk.com
dx.doi.org/10.1016/j.jocs.2014.06.001

M. Van Schyndel et al. / Journal of Computational Science 5 (2014) 882–890 883

conditions. These specifications construct a model of the fluid
which can then be simulated on a powerful computing device.
The simulation solves the problem by computing the equations of
each cell during a specific duration of time. Finally, visualization
and analysis of the results can render a meaningful and sensible
outcome of the computations.

Different cellular methods have been proposed to solve these
problems. In particular, Cellular Automata (CA) theory [4] is a
branch of discrete dynamic systems, in which space is represented
by a cellular grid, where each cell is a state machine. In CA, the time
advances in a discrete manner and triggers state changes in the cells
based on the value of their neighbor cells. This theory has been used
in physics, complexity science, theoretical biology, microstructure
modeling, and spatial modeling. The Cell-DEVS (Cellular Discrete
Event System Specification) formalism [1,5] is a related formalism
in which each cell evolves asynchronously using explicit timing
delays. This solves the problem of unnecessary processing burden
in cells and allows for more efficient asynchronous execution using
a continuous time-base, without losing accuracy. In this methodol-
ogy, each cell is represented as a DEVS atomic model that changes
state in response to the occurrence of events in an event-driven
fashion.

Cell-DEVS was originally introduced for modeling and simula-
tion of spatial systems; however, not until the current research
has anyone proposed using the Cell-DEVS methodology to imple-
ment physics-based CFD equations to simulate fluid dynamics. The
rule-based nature of defining cellular model behavior provides a
platform to define area-wise behavior, leading to easier and faster
adoption and implementation of CFD solver algorithms. The other
advantage of this method is its fast computing apparatus that works
asynchronously on the cellular grid, thus increasing the execution
speed. The continuous time-advance nature of Cell-DEVS can con-
tribute to the seamless simulation of CFD, in comparison with the
discrete timing in CA that lacks the smoothness of fluid flow. Cell-
DEVS models are able to generate realistic results with reasonable
speed. Finally, the formal I/O port definitions permit output signals
to be produced based on satisfying a specific condition in the cell
lattice, and allows the transfer of data between different spatial
components. Furthermore, the solver simulation can be interfaced
with advanced visualization software to provide a realistic graphi-
cal display [6,7].

The solver proposed here uses the DEVS formalism to enable the
solution and analysis of fluid flow behaviors using a set of simple
and stable CFD algorithms. We describe the Cell-DEVS implemen-
tation of these algorithms, supplemented by sample CD++ code,
and present simulation results to demonstrate the feasibility of
the approach [8]. This is the first successful attempt in modeling
CFD as a discrete-event systems specification and we focus on how
those results were achieved. Finally, we outline how to address the
development of increasingly complex models, including the incor-
poration of solid barriers and the execution of variable time steps,
illustrating its importance within the context of biomechanical and
biomedical applications.

2. Related work

Fluid dynamic solvers are used for a wide variety of purposes.
Their goal is to create a realistic representation of a naturally occur-
ring fluid system such as rising smoke or blowing dust. The flow
of fluids can be viewed as solid particles interacting with velocity
fields or as densities. There are different methods for predict-
ing the evolution of these fields and densities: the lattice-gas [9],
Navier–Stokes equations [10] and Riemann Solvers [11].

In general, CFD methods are categorized into two groups; (i)
Discretization methods and (ii) Turbulence models. Discretization

methods are a subset of the divide and conquer approach for solv-
ing difficult computational problems, in which the computational
domain is discretized and “each term within the partial differential
equation describing the flow is written in such a manner that the
computer can be programmed to calculate” [12]. Turbulence mod-
els are designed to address the unsteady motions that can affect
flow, but cannot be directly resolved. The choice of model is typ-
ically dictated by the form of the governing equations that were
applied, which often relates to the context of the simulation. The
model is used to generate solutions at a variety of length and time
scales; the more scales that are resolved, the more detailed the flow
patterns.

Navier–Stokes equations were the first physical description of
fluid motion, a set of differential equations derived from the laws
of classical dynamics. The first comprehensive simulation of the
Navier–Stokes equations appeared in 1986 [13], and demonstrated
that detail to the level of real molecular dynamics was not nec-
essary to cause realistic fluid mechanics. In the book by Sukop
et al. [14], a method for creating a basic model of 2D fluid flow
is provided, which maps the possible collisions that can occur
and the outcomes that are determined by a set procedure. It is
the randomness generated by these procedures that is essen-
tial to its ability to simulate flows. This procedure does provide
reasonable results; however, with the standard of realism ever-
increasing, its ability to provide a realistic model is substantially
limited.

A similar model was made to represent the effect of polymer
chains on fluid flow [15] where a lattice-gas CA was used to provide
a 2-dimensional model. It was noted that further work must be
done to develop a method of using the lattice-gas method to provide
a 3-dimensional model that was able to provide realistic results
with a reasonable computational effort.

In a paper by Koelman and Nepveu [16] they demonstrated how
it is possible to use a CA to model flow through a porous mate-
rial. They were able to model a one-phase Darcy automaton based
on a Navier–Stokes automaton; however, when they implemented
a two-phase Darcy automaton they had to implement much sim-
pler local transition rules. In research presented by Stam [17], the
Navier–Stokes equations are used to model the fluid dynamics.
While the algorithms implemented do not meet the formalism
of CA, they do share several key characteristics. A cell lattice is
spanned over the simulation window with each cell holding unique
information regarding that particular area. The first difference is
that each cell space stores a density value and the horizontal and
vertical components of velocity (as well as the z component for a
3-dimensional model). The cell spaces are updated simultaneously
at discrete time intervals. In a true CA, each cell can be updated
independent of other cells, and the algorithms must solve multiple
steps for all cells before the final value is obtained. Nevertheless,
Stam’s [17] algorithm provided very realistic results with limited
computational effort by utilizing a rather basic set of rules, and has
potential to be adapted to Cell-DEVS.

In this paper, we use the algorithms presented by Stam to cre-
ate a CFD solver developed according to the conventions of the
Cell-DEVS formalism. These particular algorithms were chosen for
several reasons. First, the inherent mathematical stability of these
algorithms allows simulations to be advanced using arbitrary time
steps. This feature is particularly relevant to the time advancement
strategies facilitated by the DEVS formalism. Second, the relative
simplicity of these algorithms lends itself well to the prospect
of extending this solver to handle increasingly complex scenar-
ios. Third, these algorithms can be performed using a standard
PC for reasonably sized grids of both two- and three-dimensions.
Fourth, the complete C-code implementation of these algorithms
is published in [17], enabling verification of the Cell-DEVS imple-
mentation.

Download English Version:

https://daneshyari.com/en/article/429525

Download Persian Version:

https://daneshyari.com/article/429525

Daneshyari.com

https://daneshyari.com/en/article/429525
https://daneshyari.com/article/429525
https://daneshyari.com

