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Heterogeneity is omnipresent in today’s commodity computational systems, which com-
prise at least one Central Processing Unit (CPU) and one Graphics Processing Unit (GPU). 
Nonetheless, all this computing power is not being harnessed in mainstream computing, as 
the programming of these systems entails many details of the underlying architecture and 
execution models. Current research on parallel programming is addressing these issues but, 
still, the system’s heterogeneity is exposed at language level. This paper proposes a uniform 
framework, grounded on the Single Operation Multiple Data model, for the programming 
of such heterogeneous systems. We designed a simple extension of the Java programming 
language that embodies the model, and developed a compiler that generates code for both 
multi-core CPUs and GPUs. A performance evaluation attests that, despite being based on a 
simple programming model, the approach is able to deliver performance gains on par with 
hand-tuned data-parallel multi-threaded Java applications.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The landscape of computing systems has altered in the last few years, with the shift from frequency to core scaling in 
CPU design, and the increasing popularity of General Purpose computation on GPUs (GPGPU) [1]. The architecture of current 
commodity computational systems is quite complex and heterogeneous, featuring a combination of, at least, one multi-core 
CPU and one GPU. This is further aggravated by the distinct nature of the architectural and execution models in place.

Therefore, the programming of these heterogeneous systems as a whole raises several challenges: which computations 
to run on each kind of processing unit; how to decompose a problem to fit the execution model of the target processing 
unit; how to map this decomposition in the system’s complex memory hierarchy; among others. Tackling them efficiently 
requires true knowledge of parallel computing and computer architecture. However, mainstream software developers do not 
wish to deal with details, inherent to the underlying architecture, that are completely abstracted in classic sequential and 
even concurrent programming. Consequently, most of the available computing power is not really exploited.

The definition of high-level programming models for heterogeneous computing has been the driver of a considerable 
amount of recent research. Existing languages, such as X10 [2], Chapel [3], and StreamIt [4] have incorporated GPU support, 
and new languages, such as Lime [5], have been proposed altogether. Of these works, we are particularly interested in X10 
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and Chapel, since, to the best of our knowledge, they are the only to target heterogeneous systems at node and cluster 
level. However, as will be detailed in Section 2, their approach is not platform independent, exposing details of the target 
architecture at language level.

In this paper, we propose the use of the Single Operation Multiple Data (SOMD) model, presented in [6], to provide a 
uniform framework for the programming of this range of architectures. SOMD introduces the expression of data parallelism 
at subroutine level. The calling of a subroutine in this context spawns several tasks, each operating on a separate partition of 
the input dataset. These tasks are offloaded for parallel execution by multiple workers, and run in conformity to a variation 
of the Single Program Multiple Data (SPMD) execution model.

This approach provides a framework for the average programmer to express data parallel computations by annotating 
unaltered sequential subroutines, hence taking advantage of the parallel nature of the target hardware without having to 
program specialized code. In [6] we debated that this approach is viable for the programming of both shared and distributed 
memory architectures. In this extended version, we broad this claim to the GPU computing field, thus addressing the issue 
of heterogeneous computing. To this extent, our contributions are: i) a more detailed presentation of the SOMD execution 
model and a refinement of its programming model, featuring new constructs; ii) the conceptual realization of this execution 
model on shared memory architectures, distributed memory architectures, and GPU accelerated systems; iii) the effective 
compilation process for tackling heterogeneous computing, namely targeting multi-core CPUs and GPUs; iv) the evaluation 
of the code generated by our current prototype against hand-tuned data parallel multi-threaded applications.

The remainder of this paper is structured as follows: the next section provides a detailed motivation for expressing 
data parallelism at subroutine level, when compared to the usual loop-level parallelism. We also make evidence that ap-
proaches such as X10 and Chapel are bound to the underlying architecture. Section 3 overviews the SOMD execution and 
programming models. Section 4 presents our conceptual realization of the model on multiple architectures. Sections 5 and 6
describe, respectively, the compilation process for generating code for both shared memory multi-core CPUs and GPUs, and 
the required runtime support. Section 7 evaluates our prototype implementation from a performance perspective. Finally, 
Section 8 presents our concluding remarks.

2. Background and related work

Data-parallelism is traditionally expressed at loop-level in both shared and distributed memory programming. Regarding 
the former, OpenMP [7] is the most popular parallel computing framework. It provides a mix of compiler directives, library 
calls and environment variables, being that data-parallelism is expressed by annotating with directives the loops suitable 
for parallel execution. More recently, similar approaches have made their way into GPGPU. The most notorious example is 
OpenACC [8], a directive-based specification for offloading computation to GPUs and managing the associated data transfers.

Another representative system for shared-memory parallelism is Cilk [9], a C language extension that offers primitives 
to spawn and synchronize concurrent tasks (C functions). In Cilk, data-parallelism is expressed by programming a loop to 
spawn the desired number of tasks, each receiving as argument the boundaries of the subset of the problem’s domain 
it will work upon. A C++ derivation of the extension was recently integrated in Intel’s parallel programming toolkit [10]. 
This derivation adds some new features to the system, among which a special loop construct (cilk_for) for loop-level 
parallelism.

Intel Threading Building Blocks (TBB) [11] is a C++ template library that factorizes recurring parallel patterns. Data-
parallelism in TBB may be expressed through the specialization of loop templates, supplying the task’s body and, eventually, 
a partitioning strategy.

Loop-level data parallelism also prevails in distributed memory environments. di_pSystem [12] applied Cilk-like par-
allelism to distributed environments, providing a uniform interface for the programming of both shared and distributed 
memory architectures. For that purpose, the spawned tasks could be parametrized with the data to work upon and operate 
over explicitly managed shared variables. Single Program Multiple Data (SPMD) languages, such as UPC [13], require a spe-
cial forall construct to express loops that work upon data distributed across multiple nodes. In the particular case of UPC 
(and Co-Array Fortran [14]) the Partitioned Global Addressing Space (PGAS) model provides the means for the programmer 
to explore the affinity between data and computation and hence reduce the communication overhead.

X10 [15] extends the PGAS model with notion of asynchronous activity, providing a framework for both task and data 
parallelism. Data distribution is performed at runtime upon a set of places (abstractions of network nodes). In this context, 
data parallelism is expressed through loops that iterate over this set of places, working only on the data residing locally at 
each place. Inter-place parallelism is expressed much in the same way as in the original Cilk. More recently, the language 
has also been extended to support the offload of computation to GPUs [2], which are presented as sub-places of the original 
place, the node hosting the GPU. This approach adequately exposes the isolation of the GPU’s memory relatively to node’s 
main memory. However, the X10 programming model is very imperative, forcing the programmer to be also aware of the 
underlying execution model. In order to be suitable for GPU execution an X10 asynchronous task must begin with two for
loops: one to denote the distribution of the work per thread-groups, and a second to denote the distribution of the work 
within a group. Moreover, the enclosed code must fulfill several restrictions, such as the absence of method invocations.
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