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a b s t r a c t

The paper addresses a numerical computation of Feynman loop integrals, which are computed by an
extrapolation to the limit as a parameter in the integrand tends to zero. An important objective is to
achieve an automatic computation which is effective for a wide range of instances. Singular or near
singular integrand behavior is handled via an adaptive partitioning of the domain, implemented in
an iterated/repeated multivariate integration method. Integrand singularities possibly introduced via
infrared (IR) divergence at the boundaries of the integration domain are addressed using a version of the
Dqags algorithm from the integration package Quadpack, which uses an adaptive strategy combined with
extrapolation. The latter is justified for a large class of problems by the underlying asymptotic expan-
sions of the integration error. For IR divergent problems, an extrapolation scheme is presented based on
dimensional regularization.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

This article describes applications of numerical integration and
extrapolation for the computation of some classes of Feynman
integrals. Sample results are included for one-loop pentagon and
two-loop ladder box diagrams and a new approach is presented for
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handling infrared divergence using dimensional regularization and
extrapolation.

The motivations of high energy physics collider experiments
include the precise measurement of parameters in the standard
model [1,2] and detection of any deviations of experimental data
from the theoretical prediction, leading to the study of new phe-
nomena.

The computation of loop integrals is required in high energy
physics to obtain higher order terms in perturbation calculations
of the scattering amplitude. Generally, with a given set of external
particles and the interaction, a large number of Feynman diagrams
is associated. Each diagram represents one of the possible configu-
rations of virtual processes and it describes a part of the amplitude.
The square sum of the amplitudes gives the probability or cross
section of the process.
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Feynman integrals suffer from singularities through vanish-
ing integrand denominators. The momentum integration of loop
integrals is performed with Feynman’s parametrization technique.
Ultraviolet poles, due to the integrand behavior for large momenta,
are removed by a renormalization procedure. Infrared (IR) poles
may be present when some masses are negligible and give rise to
non-integrable boundary singularities in the Feynman parametric
form; their contribution can be eliminated via dimensional reg-
ularization. Sector decomposition [3–6] is applied to disentangle
overlapping singularities. We give results in [7–9] using sector
decomposition and iterated integration followed by extrapolation.
An alternative approach introduces a fictitious small mass for the
photon, as in [7,10]. Results using the extended precision package
HMLIB [11] are reported in [10].

For physical kinematics, the parametrized form may have inte-
grand singularities in the interior of the integration domain.
Traditionally, numerical contour integration has been performed
for singularities at specific locations in the integration region. The
contour is moved away from the singularity in the complex plane,
followed by a Monte-Carlo integration [12].

For an automatic computation without explicit information
about the location or nature of the singularity, we have studied the
application of extrapolation techniques to the computation of one-
loop and two-loop diagrams. The latter include 3-point (vertex),
4-point (box) [13,14,8,10], 5-point (pentagon) and, after reductions,
6-point (hexagon) diagrams [15]; as well as two-loop self-energy
[16], double box (ladder) and crossed vertex [17,18] diagrams. Results
for a box diagram contribution with complex masses are given in
[16].

We compute a numerical integral approximation as a limit
where the value of a parameter in the integrand tends to zero. This
involves the evaluation of a sequence of integrals for decreasing val-
ues of this parameter and a procedure for convergence acceleration
or extrapolation to the limit.

As the integral computations often involve singularities within
or at the boundaries of the integration region, a suitable numer-
ical integration technique is essential. For an integral of a fairly
low dimension, we use numerical iterated (repeated) integration
where lower-dimensional adaptive methods are invoked recur-
sively. Although we have, in several cases, combined one- and
multi-dimensional integration methods in different sets of coor-
dinate directions, repeated integration with 1D methods from
Quadpack [19] has been effective for many challenging numeri-
cal integration problems where standard multivariate integration
software fails.

An outline of the Quadpack general adaptive integration algo-
rithms is provided in Section 3, as well as some numerical
background on extrapolation methods. Definitions and notations
pertaining to Feynman diagrams, Feynman parametrization and
the corresponding integrals are given in Section 2. Section 4
gives extrapolation results for the one-loop pentagon diagram and
Section 5 describes a computation for the two-loop (ladder) box.

IR-divergent problems are introduced in Section 6 and extrap-
olation results are included for a sample problem, as well as a
massless vertex which is difficult numerically in view of its chal-
lenging singular behavior. Results for IR-singularities are obtained
with a linear extrapolation, which is justified on the basis of the
asymptotic integral expansions. The latter are generally expressed
in terms of hypergeometric functions. An extrapolation approach
for hypergeometric functions is further given in Section 7.

2. Feynman integral and parameter form

A Feynman diagram is a graph where each edge (or line) rep-
resents an intermediate state of a particle, and particles meet at

Fig. 1. One-loop diagram with n external legs, where p� is the incoming momentum
of the �-th external particle, mj the mass carried by the j-th internal line and the

momentum is kj = l +
∑j−1

�=1
p� .

the vertices. An edge may be incident to only one vertex, in which
case it is called an external line; an external vertex is incident with at
least one external line. Vertices and lines other than external ones
are called internal (vertices and lines). The number of external lines
equals the total number of particles present in the initial and final
states [20]. A diagram may have one or multiple loops or cycles.

Fig. 1 shows a one-loop diagram with n external legs [21], where
p� is the momentum (directed inward) of the �-th external particle.
The j-th internal line associated with a spinless particle of mass mj

and 4-momentum kj = l + ∑j−1
�=1p� introduces a Feynman propaga-

tor of the form i/(k2
j

− m2
j

+ iıj) into the Feynman integral, which
will be calculated in the limit as ıj → 0 . In general, kj-dependencies
also enter in the numerator of the integrand. The one-loop (n-point)
Feynman integral is expressed in [21] as

In[℘] =
∫

d4l

�2i

℘(k1, . . . , kn)∏n
j=1(k2

j
− m2

j
+ iı�)

(1)

where ℘ is a polynomial in the momenta kj. The integral is called
scalar if ℘ ≡ 1.

The propagators introduce several types of singularities and
the representation is not well defined mathematically due to the
following reasons [20]: (a) Since the propagators are regarded as
distributions [22], their product is not well defined; this problem
is circumvented by regarding ıj finite during the integration. (b)
The integrations need to be performed in a specified manner. The
Feynman parametrization is one of the techniques to perform the
integration. (c) The contribution from very large momenta may
cause ultraviolet divergence, which is dealt with by renormalization.
To bypass the problem, the ultraviolet divergence can be sepa-
rated by dimensional regularization. (d) Infrared (IR) divergence can
occur with vanishing kj when masses are zero; IR divergence can-
not be removed from the transition amplitude but cancels out in
the overall transition probability [23].

In order to allow numerical integration in cases with IR sin-
gularities, dimensional regularization is a technique to determine
the parts of the integrand responsible for the divergence. The infi-
nite IR contributions correspond to poles in a Laurent expansion of
the integral with respect to ε, where N − 2ε = 4 and N replaces the
integral dimension as ε → 0.
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