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a b s t r a c t

On modern processors, data transfer exceeds floating-point operations as the predominant cost in many
linear algebra computations. One tuning technique that focuses on reducing memory accesses is loop
fusion. Determining the optimum amount of loop fusion to apply to a routine is difficult as fusion can
both positively and negatively impact memory traffic. We present a model that accurately and efficiently
evaluates how loop fusion choices affect data movement through the memory hierarchy. We show how
to convert the model’s memory traffic predictions to runtime estimates that can be used to compare loop
fusion variants.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Historically, the performance of tuned linear algebra compu-
tations has been measured in terms of floating-point operations
per second (flops). For operations like matrix–matrix multiplication
that perform many flops per memory access, such a measurement
can still be valid [1]. However, for other calculations, performance
can be limited by the cost of passing data from memory to the
processor [2]. The cost of these memory-bound operations is more
accurately expressed in terms of reads and writes than flops.

Recently, the focus of tuning linear algebra operations has
shifted to minimizing memory traffic, often resulting in speedups
equivalent to its reduction [3,4]. This optimization can increase
program speed even if the number of flops performed increases
as a result [5]. One technique to lessen data movement is to
combine or fuse the loops of multiple calculations [6]. Loop
fusion has been applied successfully to single kernels [7] and
as well as to such important larger scale operations as House-
holder bidiagonalization where speedups of 10–25% have been
reported [4].

To aid in the implementation of arbitrary sequences of loops,
compilers are being improved to include loop fusion as a possi-
ble optimization [8,9]. To find efficient routines, these compilers
employ various methods to figure out how much fusion to apply.
However, finding all possible ways to fuse loops of general compu-
tations is NP-complete [10], and, therefore, testing all possibilities
to determine the fastest can become expensive for even small
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problems. Thus, in some cases, heuristics govern the optimizations
[9]. In others, search is used to figure out the best routine [11].
Additionally, search can be combined with modeling [12] to direct
a compiler on which fusion decisions are appropriate. However,
both heuristics and guided search can produce suboptimal routines
when they do not evaluate all fusion options. In particular, directed
search can identify local extrema [13].

As we show in [14], an enumeration of the entire search space
for a given routine is often feasible in the restricted domain of linear
algebra. There, we also introduce a model that dramatically reduces
search time. In this paper, we explain how our loop fusion research
directs the selection of routine and hardware features included in
the model. By not including the entire machine, we are able to sig-
nificantly decrease our model’s runtime at a small accuracy cost.
Our model builds on the work of others to predict memory misses
[15], turn data access pattern information into runtime predictions
[16] and use data movement to direct search and find high per-
forming loop fusion routines [12]. It uses a unique set of tradeoffs
designed to balance runtime and accuracy for a compiler that enu-
merates all possible ways to fuse a linear algebra routine. Using the
model, we are able to accurately and efficiently compare multiple
variants of the same linear algebra routine with differing amounts
of fusion, thus reducing the amount of time it takes the compiler to
generate efficient fused kernels.

The rest of the paper is organized as follows. In Section 2,
we present examples that show how loop fusion can increase or
decrease memory traffic to motivate why modeling is important
to producing efficient routines. In Section 3, we describe how to
generate accurate memory estimates for fused linear algebra rou-
tines, which we encode into the model. In Section 4, we explain
how we convert those estimates to runtime predictions, which are
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then used to compare routines. Conclusions and future work are
discussed in Section 5.

2. How fusion impacts data movement

When successful, loop fusion reduces the amount of data that
must move through the memory hierarchy by increasing the local-
ity of data accesses. The memory hierarchy, which stores and moves
data to perform calculations, includes registers, caches, translation
lookaside buffers (TLBs) and main memory. Registers store data
immediately accessible by the processor, while caches store a sub-
set of the data from main memory physically closer to the processor
than the memory is. TLBs are used to speed the virtual to physical
translation of memory addresses that is necessary on processors
using virtual memory, which almost all modern processors do.
Caches are arranged into lines, which typically hold 32–128 bytes
of data that are stored consecutively in memory. Each entry in a
TLB stores the translation for one page of main memory. A page is
usually 4 kB in size.

For memory-bound operations, loop fusion can increase perfor-
mance nearly proportionately to the reduction in memory traffic.
However, too much fusion can negatively impact performance by
causing register spill, which occurs when the compiler cannot allo-
cate a register for a datum, as well as TLB and cache misses. In this
section, we show how fusion affects data movement through the
memory hierarchy and the consequences for routine performance.

In order to observe effects that occur when many loops are
fused, we look at what happens when a number of matrix–vector
multiplications are combined. We focus on large matrix orders in
our experiments because small matrix problems often fit within
cache and are computationally bound. To begin, we define a rou-
tine DGEMV2 that multiplies vectors u0 and u1 in turn by a matrix
A as shown in Fig. 1. Fig. 2 shows the three possible ways to fuse the
routine: no loop fusion, only outer loops fused, and all loops fused.

2.1. Fusion improves performance

Fusing the two matrix–vector multiplications leads to better
memory usage and so better performance. Fig. 3 shows that, on
the Opteron system described in Table 1, fusing the outer loops
improves the megaflop rating by 60% over the unfused routine and
fusing all loops increases it by 70%. The figure also shows that both
fused routines reduce L2 cache misses by approximately one half.
TLB misses are also reduced by one half for both routines. However,
L1 cache misses and executed load instructions are only reduced
by one quarter for the fully fused routine. For the outer loop fused
routine, L1 cache misses and executed load instructions are nearly
identical to those of the unfused routine. These experiments and

Fig. 1. DGEMV2.

Table 1
Specifications of the test machines. For TLBs, we list the number of entries. On the
Opteron there are two and the number of entries is listed for each.

Processor Speed Mem Bus speed L1 L2 TLB

Intel Core 2 2.4 GHz 2 GB 1333 MHz 32 kB 4 MB 256
AMD Opteron 2.6 GHz 3 GB 1000 MHz 64 kB 1 MB 40/512

all others presented in this paper were compiled using the Intel
compiler icc with the −O3 flag. All matrices tested were dense.

2.2. Fusion degrades performance

Loop fusion does not always result in improved performance.
When fusion requires more data to fit in a memory structure of
the computer than the structure can hold, memory traffic increases
[17,18]. To explore how loop fusion can increase data movement
through the caches and registers, we expand the previous exper-
iment to the fusion of an arbitrary number nvecs of matrix vector
multiplications Aux, x = 1, . . . , nvecs.

2.2.1. Cache effects
When the outer loops of the nvecs matrix–vector multiplica-

tions are fused, performance dropoffs occur as shown in Fig. 4.
In the fused routine, all operand vectors ux, x = 1, . . . , nvecs, are
accessed during the iterations of the single outer loop. For large
matrix orders, the combined size of the vectors is larger than cache
meaning that they must be read from memory. That increase in L2
cache misses is demonstrated in Fig. 4. When all loops are fused
cache misses occur as well, but in order to isolate the impact
of the cache from registers we show results using outer loop
fusion.

Fig. 2. Three possible loop fusion options. (a) No fusion, (b) all outer loops fused, and (c) all loops fused.
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