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Reversible pushdown automata are deterministic pushdown automata that are also
backward deterministic. Therefore, they have the property that any configuration occurring
in any computation has exactly one predecessor. In this paper, the computational capacity
of reversible computations in pushdown automata is investigated and turns out to lie
properly in between the regular and deterministic context-free languages. Furthermore,
it is shown that a deterministic context-free language cannot be accepted reversibly if
more than realtime is necessary for acceptance. Closure properties as well as decidability
questions for reversible pushdown automata are studied. Finally, we show that the problem
to decide whether a given nondeterministic or deterministic pushdown automaton is
reversible is P-complete, whereas it is undecidable whether the language accepted by a
given nondeterministic pushdown automaton is reversible.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Computers are information processing devices which are physical realizations of abstract computational models. It may
be difficult to define exactly what information is or how information should be measured suitably. It may be even more
difficult to analyze in detail how a computational device processes or transmits information while working on some input.
Thus, one first step towards a better understanding of information is to study computations in which no information is
lost. Another motivation to study information preserving computations is the physical observation that a loss of information
results in heat dissipation [3,17]. A first study of this kind has been done in [3] for Turing machines where the notion
of reversible Turing machines is introduced. Deterministic Turing machines are called reversible when they are also back-
ward deterministic. One fundamental result shown in [3] is that every, possibly irreversible, Turing machine can always be
simulated by a reversible Turing machine in a constructive way. This construction is significantly improved in [20] with
respect to the number of tapes and tape symbols. Thus, for the powerful model of Turing machines, which describe the
recursively enumerable languages, every computation can be made information preserving. At the other end of the Chom-
sky hierarchy there are the regular languages. Reversible variants of deterministic finite automata have been defined and
investigated in [2,23]. It turns out that there are regular languages for which no reversible deterministic finite automaton
exists. Thus, there are computations in which a loss of information is inevitable. Another result of [23] is that the existence
of a reversible automaton can be decided for a regular language in polynomial time.

Nowadays, reversible computing has become a field of intensive study from several perspectives. In [21] one may find a
recent survey which summarizes results on reversible Turing machines, reversible cellular automata, which are a massively
parallel model consisting of interacting deterministic finite automata, and other reversible models such as logic gates, logic
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circuits, or logic elements with memory. Reversible deterministic finite automata are also studied in the context of algo-
rithmic learning theory [2,14,18] and quantum computing [8,9] whereas construction problems are investigated in [5,6,19].
A recent paper which motivates the study of reversible computing from the vantage point of physics is [4]. How to compute
reversibly by using a reversible programming language is presented in [26]. Reversibility has also been studied for other
computational models such as, for example, flowcharts [25] or process calculi [22]. See also the references in [26].

Reversible variants of the massively parallel model of cellular automata and iterative arrays have been also studied
in [15,16] with regard to the acceptance of formal languages. One main result there is the identification of data structures
and constructions in terms of closure properties which can be implemented reversibly. Another interesting result is that, in
contrast to regular languages, there is no algorithm which decides whether a given cellular device is reversible.

In this paper, the investigation of reversibility in computational devices is complemented by the study of reversible push-
down automata. These are deterministic pushdown automata that are also backward deterministic. First, it is shown that all
regular languages as well as some non-regular languages are accepted by reversible deterministic pushdown automata. On
the other hand, we prove that there is a deterministic context-free language which cannot be accepted in a reversible way.
Thus, the computational capacity of reversible pushdown automata lies properly in between the regular and deterministic
context-free languages. Moreover, every deterministic context-free language which needs more than realtime is shown not
to be acceptable by reversible pushdown automata. In the second part of the paper, closure properties and decidability
questions of the language class are investigated. It turns out that the closure properties of reversible pushdown automata
are similar to those of deterministic pushdown automata. The main difference is the somehow interesting result that the
language class accepted by reversible pushdown automata is not closed under union and intersection with regular languages.
Finally, the questions of whether a given automaton is a reversible pushdown automaton, and whether its language is re-
versible are investigated. We show that the problem to decide whether a given nondeterministic or deterministic pushdown
automaton is reversible is P-complete, whereas it is undecidable whether the language accepted by a given nondeterministic
pushdown automaton is reversible.

2. Preliminaries and definitions

Let Σ∗ denote the set of all words over the finite alphabet Σ . The empty word is denoted by λ, and Σ+ = Σ∗ \ {λ}. The
set of words of length at most n � 0 is denoted by Σ�n . For convenience, we use Σλ for Σ ∪ {λ}. The reversal of a word
w is denoted by w R and for the length of w we write |w|. The number of occurrences of a symbol a ∈ Σ in w ∈ Σ∗ is
written as |w|a . Set inclusion is denoted by ⊆, and strict set inclusion by ⊂. A deterministic pushdown automaton (DPDA) is a
system M = 〈Q ,Σ,Γ, δ,q0,⊥, F 〉, where Q is a finite set of states, Σ is the finite input alphabet, Γ is a finite pushdown
alphabet, q0 ∈ Q is the initial state, ⊥ ∈ Γ is a distinguished pushdown symbol, called the bottom-of-pushdown symbol,
which initially appears on the pushdown store, F ⊆ Q is the set of accepting states, and δ is a mapping from Q × Σλ × Γ

to Q × Γ ∗ called the transition function. There must never be a choice of using an input symbol or of using λ input. So, it
is required that for all q in Q and Z in Γ : if δ(q, λ, Z) is defined, then δ(q,a, Z) is undefined for all a in Σ .

A configuration of a pushdown automaton is a quadruple (v,q, w, γ ), where q is the current state, v is the already read
and w the unread part of the input, and γ the current content of the pushdown store, the leftmost symbol of γ being
the top symbol. On input w the initial configuration is defined to be (λ,q0, w,⊥). For q ∈ Q , a ∈ Σλ , v, w ∈ Σ∗ , γ ∈ Γ ∗ ,
and Z ∈ Γ , let (v,q,aw, Zγ ) be a configuration. Then its successor configuration is (va, p, w, βγ ), where δ(q,a, Z) = (p, β).
We write (v,q,aw, Zγ ) 
 (va, p, w, βγ ) in this case. The reflexive transitive closure of 
 is denoted by 
∗ . To simplify
matters, we require that in any configuration the bottom-of-pushdown symbol appears exactly once at the bottom of the
pushdown store, that is, it can neither appear at some other position in the pushdown store nor be deleted. Formally, we
require that if δ(q,a, Z) = (p, β) then either Z �= ⊥ and β does not contain ⊥, or Z = ⊥ and β = β ′⊥, where β ′ does not
contain ⊥. The language accepted by M with accepting states is

L(M) = {
w ∈ Σ∗ ∣∣ (λ,q0, w,⊥) 
∗ (w,q, λ,γ ), for some q ∈ F and γ ∈ Γ ∗}.

In general, the family of all languages that are accepted by some device X is denoted by L (X).
Now we turn to reversible pushdown automata. Reversibility is meant with respect to the possibility of stepping the

computation back and forth. To this end, the pushdown automata have to be also backward deterministic. That is, any
configuration occurring in any computation must have at most one predecessor which, in addition, is computable by a
DPDA. For reverse computation steps the head of the input tape is always moved to the left. Therefore, the automaton
rereads the input symbol which has been read in a preceding forward step. So, for reversible pushdown automata there
must exist a reverse transition function.

A reverse transition function δR : Q × Σλ × Γ → Q × Γ ∗ maps a configuration to its predecessor configuration. For
q ∈ Q , a ∈ Σλ , v, w ∈ Σ∗ , γ ∈ Γ ∗ , and Z ∈ Γ , let (va,q, w, Zγ ) be a configuration. Then its predecessor configuration is
(v, p,aw, βγ ), where δR(q,a, Z) = (p, β). We write (va,q, w, Zγ ) � (v, p,aw, βγ ) in this case. Automaton M is said to
be reversible (REV-PDA), if there exists a reverse transition function δR such that ci+1 � ci , 0 � i � n − 1, for any sequence
c0 
 c1 
 · · · 
 cn of configurations passed through by M and beginning with an initial configuration c0 (cf. Fig. 1).

To clarify our notion we continue with an example.
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