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This paper deals with descriptive complexity of picture languages of any dimension by 
fragments of existential second-order logic:
1) We generalize to any dimension the characterization by Giammarresi et al. (1996) of the 
class of recognizable picture languages in existential monadic second-order logic.
2) We state natural logical characterizations of the class of picture languages of any 
dimension d ≥ 1 recognized in linear time on nondeterministic cellular automata, a robust 
complexity class that contains, for d = 1, all the natural NP-complete problems.
Our characterizations are essentially deduced from normalization results for first-order and 
existential second-order logics over pictures.
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1. Introduction: context and discussion

Locality is a useful and widespread concept common to many areas of science: physics, chemistry, mathematics, etc. In 
computer science, it is a unifying notion, connecting combinatorics, logic, formal language theory, computational models, 
and complexity theory. For example, the local and combinatorial notion of tiling allowed Hao Wang et al. to prove in 1962 
the undecidability of the decision problem of some logics [36,76,77,3]. Locality is also a reference notion in computational 
complexity (e.g., see [1,74,75]) and in formal language theory with the notion of regular or recognizable language that has 
been extended to tree or graph languages (see [70,6]). Typically, as recalled by Borchert [2], Mac Naughton and Papert 
established in their classical monograph [53] that a word language is regular “iff it consists of the words whose positions 
can be colored so that the coloring respects the letters and obeys a given finite set of neighborhood constraints”.

There is a wealth of notions of locality in logic and finite model theory. For first-order logic, Libkin’s book [46] (see 
Chapters 4 and 5) identifies Hanf locality [31] and Gaifman locality [17] and describes a series of locality results for this 
logic [12,15,63,32,64,45] and its order-invariant extension [30] or counting extension [44].

As a striking result, Gaifman’s Theorem states in 1982 [17] that any first-order sentence is equivalent to a boolean 
combination of local sentences: roughly, a local sentence states the existence of k elements x1, . . . , xk , at distance 2d from 
each other (for some fixed d) such that for each xi , the restriction of the structure to the set of elements at distance d of xi
has some fixed property ψ .

When applied to a class of structures of bounded degree, e.g. the class of cubic graphs, the local feature of first-order 
sentences can be even strengthened. As shown in [8,47], such a sentence is essentially equivalent to a boolean combination 
of cardinality formulas with only one variable, i.e. of the form ∃kx ψ(x), meaning “there exists k elements x that satisfy 
ψ(x)”.

An even stronger notion of locality in logic is presented by Borchert in [2]. There, a picture language is local if it is 
defined as the set of pictures that do not contain any pattern belonging to some fixed finite set. Borchert proves that a 
picture language is local iff it is definable by a first-order sentence with only one variable, which is universally quantified, 
provided each picture is represented on its pixel domain with successor functions that encode the pixel adjacencies.

Computational models and computational complexity also involve several locality notions. Whereas it is questionable 
whether the Random Access Machine (RAM) or the pointer machine (e.g., see [61]) are local models, Turing machines 
and cellular automata are regarded as the prototypical models of local sequential and local parallel computation, respec-
tively. Notice the role of the underlying structure for deciding what is local and what is nonlocal: while a configuration of 
a Turing machine or of a cellular automaton is essentially a word or a picture, that are local structures, a configuration of 
a RAM (resp. pointer machine) is a function from addresses to register contents (resp. from locations to locations). Clearly, 
such a function f allows to access in one step any location b from any other one a, even it they are arbitrarily far from each 
other, provided that f (a) = b: this contradicts the locality principle.

This paper1 deals with locality in the context of words and pictures as underlying structures (e.g., see [2,18,19,21,22,
40–42,50,51,72]). For any dimension d ≥ 1, a d-picture language is a set of d-dimensional words (colored d-dimensional 
grids). We study descriptive complexity of nondeterministic classes of word/picture languages by syntactical fragments of 
existential second-order logic. First, notice the following results:

1. In a series of papers culminating in [22], Giammarresi et al. proved that a 2-picture language is recognizable (i.e. is the 
projection of a local picture language) iff it is definable in existential monadic logic (EMSO). In short: REC2 = EMSO. This 
is a picture language variant of the classical characterization of the regular/recognizable word language by (existential) 
monadic second-order logic, in short REG = REC1 = EMSO = MSO [4,10,73,53].

2. In fact, the class REC2 contains some NP-complete problems. More generally, one observes that for each dimen-
sion d ≥ 1, RECd can be defined as the class of d-picture languages recognized in constant time by nondeterministic 
d-dimensional cellular automata. That means, for each L ∈ RECd there is some constant integer c such that each com-
putation stops at instant c and a picture belongs to L iff it has at least one computation that stops with each cell in an 
accepting state (see e.g. [68]).

The present paper originates from two questions about word/picture languages:

• How can we generalize the proof of the above-mentioned theorem of Giammarresi et al. to any dimension? That is, can 
we establish the equality RECd = EMSO for d-picture languages of any dimension d ≥ 1?

• Can we obtain logical characterizations of time complexity classes of cellular automata? This originates from a question 
Jacques Mazoyer asked the first author in 2001 (personal communication): exhibit a logical characterization of the linear 
time complexity class of nondeterministic cellular automata.

As Cris Moore has pointed to us (personal communication), it is significant that those picture language classes – recog-
nizable languages and picture languages recognized by time bounded cellular automata – were invented independently in 

1 A preliminary and much shorter version of this paper appeared as a conference paper [28].
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