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In general, constructing a locally-optimal structure is a little harder than constructing an 
arbitrary structure, but significantly easier than constructing a globally-optimal structure. 
A similar situation arises in listing. In counting, most problems are #P-complete, but in 
approximate counting we observe an interesting reversal of the pattern. Assuming that 
#BIS is not equivalent to #SAT under AP-reductions, we show that counting maximal in-
dependent sets in bipartite graphs is harder than counting maximum independent sets. 
Motivated by this, we show that various counting problems involving minimal separators 
are #SAT-hard to approximate. These problems have applications for constructing triangu-
lations and phylogenetic trees.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

A locally-optimal structure is a combinatorial structure that cannot be improved by certain (greedy) local moves, even 
though it may not be globally optimal. An example is a maximal independent set in a graph. It is trivial to construct an 
independent set in a graph (for example, the singleton set containing any vertex is an independent set). It is easy to con-
struct a maximal independent set (the greedy algorithm can do this). However, it is NP-hard to construct a globally-optimal 
independent set, which in this case means a maximum independent set. In the setting in which we work, this situation 
is typical. Constructing a locally-optimal structure is somewhat more difficult than constructing an arbitrary structure, and 
constructing a globally-optimal structure is more difficult than constructing a locally-optimal structure. For example, in bi-
partite graphs, it is trivial to construct an independent set, easy to (greedily) construct a maximal independent set, and 
more difficult to construct a maximum independent set (even though this can be done in polynomial time). This general 
phenomenon has been well-studied. In 1987, Johnson, Papadimitriou and Yannakakis [22] defined the complexity class PLS 
(for “polynomial-time local search”) that captures local optimisation problems where one iteration of the local search algo-
rithm takes polynomial time. As the authors point out, practically all empirical evidence leads to the conclusion that finding 
locally-optimal solutions is much easier than solving NP-hard problems, and this is supported by complexity-theoretic ev-
idence, since a problem in PLS cannot be NP-hard unless NP=co-NP. An example that illustrates this point is the graph 
partitioning problem. For this problem it is trivial to find a valid partition, and it is NP-hard to find a globally-optimal 
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(minimum weight) partition but Schäffer and Yannakakis [27] showed that finding a locally-optimal solution (with respect 
to a particular swapping-dynamics) is PLS-complete, so is presumably of intermediate complexity.

For listing combinatorial structures, a similar pattern emerges. By self-reducibility, there is a nearly-trivial polynomial-
space polynomial-delay algorithm for listing the independent sets of a graph [15]. A polynomial-space polynomial-delay 
algorithm for listing the maximal independent sets exists, due to Tsukiyama et al. [31], but it is more complicated. On 
the other hand, there is no polynomial-space polynomial-delay algorithm for listing the maximum independent sets unless 
P=NP. There is a polynomial-space polynomial-delay algorithm for listing the maximum independent sets of a bipartite 
graph [23], but this is substantially more complicated than any of the previous algorithms.

When we move from constructing and listing to counting, these differences become obscured because nearly everything 
is #P-complete. For example, counting independent sets, maximal independent sets, and maximum independent sets of a 
graph are all #P-complete problems, even if the graph is bipartite [32]. Furthermore, even approximately counting inde-
pendent sets, maximal independent sets, and maximum independent sets of a graph are all #P-complete with respect to 
approximation-preserving reductions [10].

The purpose of this paper is to highlight an interesting situation that arises in approximate counting where, contrary 
to the situations that we have just discussed, approximately counting locally-optimal structures is apparently more difficult 
than counting globally-optimal structures.

In order to explain the result, we first briefly summarise what is known about the complexity of approximate counting 
within #P. This will be explained in more detail in Section 2. There are three relevant complexity classes — the class contain-
ing problems which admit a fully-polynomial randomised approximation scheme (FPRAS), the class #RH�1, and #P itself. 
Dyer et al. [10] showed that #BIS, the problem of counting independent sets in a bipartite graph, is complete for #RH�1
with respect to approximation-preserving (AP) reductions and that #IS, the problem of counting independent sets in a (gen-
eral) graph is #P-complete with respect to AP-reductions. It is generally believed that the #RH�1-complete problems are 
not FPRASable, but that they are of intermediate complexity, and are not as difficult to approximate as the problems which 
are #P-complete with respect to AP-reductions. Many problems have subsequently been shown to be #RH�1-complete and 
#P-complete with respect to AP-reductions. More examples will be given in Section 2.

We can now describe the interesting situation which emerges with respect to independent sets in bipartite graphs. Dyer 
et al. [10] showed that approximately counting independent sets and approximately counting maximum independent sets are 
both #RH�1-complete with respect to AP-reductions. Thus, the pattern outlined above would suggest that approximately 
counting maximal independent sets in bipartite graphs ought to also be #RH�1-complete. However, we show (Theorem 1, 
below) that approximately counting maximal independent sets in bipartite graphs is actually #P-complete with respect to 
AP-reductions. Thus, either #RH�1 and #P are equivalent in approximation complexity (contrary to the picture that has 
been emerging in earlier papers), or this is a scenario where approximately counting locally-optimal structures is actually 
more difficult than approximately counting globally-optimal ones.

Motivated by the difficulty of approximately counting maximal independent sets in bipartite graphs, we also study the 
problem of approximately counting other locally-optimal structures that arise in algorithmic applications. First, the prob-
lem of counting the minimal separators of a graph arises in diverse applications from triangulation theory to phylogeny 
construction in computational biology. A minimal separator is a particular type of vertex separator. Definitions are given 
in Section 1.1. Algorithmic applications arise because fixed-parameter-tractable algorithms are known whose running time 
is polynomial in the number of minimal separators of a graph. These algorithms were originally developed by Bouchitté 
and Todinca [5,6] (and improved in [11]) to exactly solve the so-called treewidth and minimum-fill problems. The former 
problem, finding the exact treewidth of a graph, is widely studied due to its applicability to a number of other NP-complete 
problems [4]. The technique has recently been generalized [14] to cover problems including treecost [2] and treelength [26]. 
The algorithm can also be used to find a minimum-width tree-decomposition of a graph, a key data structure that is used 
to solve a variety of NP-complete problems in polynomial time when the width of the tree-decomposition is fixed [4]. In 
recent years, much research has been dedicated to exact-exponential algorithms for treewidth [3], the fastest of which [12]
has running time closely connected to the number of minimal separators in the graph. Indeed, there exist polynomials pL

and pU such that if the graph has n vertices and M minimal separators, then the running time is at least pL(n)M and at 
most pU (n)M2.

Bouchitté and Todinca’s approach has also recently been applied to solve the perfect phylogeny problem and two of its 
variants [21]. In this problem, the input is a set of phylogenetic characters, each of which may be viewed as a partition of a 
subset of species. The goal is to find a phylogenetic tree such that every character is convex on that tree — that is, the parts 
of each partition form connected subtrees that do not overlap. Such a tree is called a perfect phylogeny.

In all of these applications, it would be useful to count the minimal vertex separators of a graph, since this would give 
an a priori bound on the running time of the algorithms. Thus, we consider the difficulty of this problem, whose complexity 
was previously unresolved, even in terms of exact computation. Theorem 2 shows that the problem of counting minimal 
separators is #P-complete, both with respect to Turing reductions (for exact computation) and with respect to AP-reductions. 
Thus, this problem is as difficult to approximate as any problem in #P.

Motivated by applications to treewidth [11] and phylogeny [20,21], we also consider various heuristic approximations 
to the minimal separator problem. The number of inclusion-minimal separators is a natural choice for a lower bound on 
the number of minimal separators. Conversely, the number of (s, t)-minimal separators, taken over all vertices s and t , is 
a natural choice for an upper bound on the number of minimal separators. Theorem 2 shows that both of these bounds 
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