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Consider a complete communication network on n nodes. In synchronous 2-counting, the 
nodes receive a common clock pulse and they have to agree on which pulses are “odd” and 
which are “even”. Furthermore, the solution needs to be self-stabilising (reaching correct 
operation from any initial state) and tolerate f Byzantine failures (nodes that send arbitrary 
misinformation). Prior algorithms either require a source of random bits or a large number 
of states per node. In this work, we give fast state-optimal deterministic algorithms for 
the first non-trivial case f = 1. To obtain these algorithms, we develop and evaluate 
two different techniques for algorithm synthesis. Both are based on casting the synthesis 
problem as a propositional satisfiability (SAT) problem; a direct encoding is efficient for 
synthesising time-optimal algorithms, while an approach based on counter-example guided 
abstraction refinement discovers non-optimal algorithms quickly.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Synchronous counting In the synchronous C-counting problem, n nodes have to count clock pulses modulo C . Starting from 
any initial configuration, the system has to stabilise so that all nodes agree on the counter value. Put otherwise, eventually 
all nodes have to consistently label each clock pulse with values incrementing modulo C .

In this work, we consider a fully-connected synchronous communication network of n nodes with identifiers from the set 
{0, 1, . . . , n − 1}. Each node is a finite state machine with s states, and after every state transition, each node broadcasts its 
current state to all other nodes—effectively, each node can see the current states of all other nodes. An algorithm specifies 
(1) the new state for each observed state, and (2) how to map the internal state of a node to its output.
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Byzantine fault tolerance In a fault-free system, the C-counting problem is trivial to solve. For example, we can designate 
node 0 as a leader, and then all nodes (including the leader itself) can follow the leader: if the current state of the leader 
is c, the new state is c + 1 mod C . This algorithm will stabilise in time t = 1, and we only need s = C different states.

However, we are interested in algorithms that tolerate Byzantine failures. Some number f of the nodes may be faulty. 
A faulty node may send arbitrary misinformation to non-faulty nodes, including different information to different nodes 
within the same round. For example, if we have nodes 0, 1, 2, 3 and node 2 is faulty, node 0 might observe the state vector 
(0, 1, 1, 1), while node 1 might observe the state vector (0, 1, 0, 1).

Our goal is to design an algorithm with the following guarantee: even if we have up to f faulty nodes, no matter 
what the faulty nodes do, the system will stabilise so that after t rounds all non-faulty nodes start to count clock pulses 
consistently modulo C . We will give a formal problem definition in Section 4.

Synchronous counting can be used as a fault-tolerant co-ordination primitive in systems where a synchronous clock 
signal is available, but the clock pulses have not been labelled in any manner, for example, there is no distinction between 
even and odd clock pulses. In general, a C-counter can be used as a fault-tolerant round counter that assigns explicit round 
numbers for each clock pulse.

State of the art Both randomised and deterministic algorithms for synchronous counting (often also referred to as digital 
clock synchronisation) have been presented in the literature (see Section 2). However, prior algorithms tend to be expensive 
to implement in hardware: they require a source of random bits or complicated circuitry.

In this work, we use a single parameter s, the number of states per node, to capture the complexity of an algorithm. If 
one resorts to randomness, it is possible to solve 2-counting with the trivially optimal number of s = 2 states—at the cost 
of a slow stabilisation time (see Sections 2 and 5). However, it is not at all clear whether a small number of states suffices 
for deterministic algorithms.

Contributions We employ computational techniques to design deterministic 2-counting algorithms that have the smallest 
possible number of states. Our contributions are two-fold:

1. we present new algorithms for the synchronous counting problem,
2. we develop new computational techniques for constructing self-stabilising Byzantine fault-tolerant algorithms.

Our focus is on the first non-trivial case of f = 1. The case of n = 1 is trivial, and by prior work it is known that there is 
no algorithm for 1 < n < 4. We give a detailed analysis of 2-counting for n ≥ 4:

• there is no deterministic algorithm for f = 1 and n = 4 with s = 2 states,
• there is a deterministic algorithm for f = 1 and n ≥ 4 with s = 3 states,
• there is a deterministic algorithm for f = 1 and n ≥ 6 with s = 2 states.

Overall, we develop more than a dozen different algorithms with different characteristics, each of which can be also gen-
eralised to a larger number of nodes. See Fig. 1 for an overview of the time–space tradeoffs that we achieve with our 
algorithms.

With very few states per node, our algorithms are easy to implement in hardware. For example, a straightforward 
implementation of our algorithm for f = 1, n = 4, and s = 3 requires just 2 bits of storage per node, and a lookup table 
with 34 = 81 entries. All of our computer-designed algorithms are freely available online [1] in a machine-readable format. 
While our algorithms are synchronous 2-counters, they can be easily composed to construct synchronous 2b -counters for 
any positive integer b (see Section 3 for details).

This work can be seen as a case study of applying synthesis techniques in the area of distributed algorithms. We demon-
strate that the synthesis of non-trivial self-stabilising Byzantine fault-tolerant algorithms is indeed possible with the help 
of modern propositional satisfiability (SAT) solvers [6,26]. We describe two complementary approaches for the synthesis of 
synchronous 2-counting algorithms and give an empirical comparison of their relative performance:

1. a direct encoding as SAT,
2. a SAT-based counter-example guided abstraction refinement (CEGAR) [13,14] approach.
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