
Journal of Computer and System Sciences 82 (2016) 347–356

Contents lists available at ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

Conservative constraint satisfaction re-revisited

Andrei A. Bulatov 1

School of Computing Science, Simon Fraser University, 8888 University Drive, Burnaby BC, V5A 1S6, Canada

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 July 2014
Received in revised form 12 December 2014
Accepted 9 July 2015
Available online 17 August 2015

Keywords:
Constraint satisfaction problem
Complexity
Dichotomy
Algebraic approach

Conservative constraint satisfaction problems (CSPs) constitute an important particular
case of the general CSP, in which the allowed values of each variable can be restricted
in an arbitrary way. Problems of this type are well studied for graph homomorphisms.
A dichotomy theorem characterizing conservative CSPs solvable in polynomial time and
proving that the remaining ones are NP-complete was proved by Bulatov (2003) in [4].
Its proof, however, is quite long and technical. A shorter proof of this result based on the
absorbing subuniverses technique was suggested by Barto (2011) in [1]. In this paper we
give a short elementary proof of the dichotomy theorem for conservative CSPs.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In a constraint satisfaction problem (CSP) the aim is to find an assignment of values to a given set of variables, subject
to specified constraints. The CSP is known to be NP-complete in general. However, certain restrictions on the form of the
allowed constraints can lead to problems solvable in polynomial time. Such restrictions are usually imposed by specifying a
constraint language, that is, a set of relations that are allowed to be used as constraints. A principal research direction aims
to distinguish those constraint languages that give rise to CSPs solvable in polynomial time from those that do not. The
dichotomy conjecture [14] suggests that every constraint language gives rise to a CSP that is either solvable in polynomial
time or is NP-complete. The dichotomy conjecture is confirmed in a variety of particular cases [1–5,16,23], but the general
problem remains open.

One of the important versions of the CSP is often referred to as the conservative or list CSP. In a CSP of this type the set of
values for each individual variable can be restricted arbitrarily. Restrictions of this type can be studied by considering those
constraint languages which contain all possible unary constraints; such languages are also called conservative. Conservative
CSPs have been intensively studied for languages consisting of only one binary symmetric relation, that is, graphs; in this
case CSP is equivalent to the graph homomorphism problem [11–13,16,21].

In [2,4] the dichotomy conjecture was confirmed for conservative CSPs. However, the proof given in [2,4] is quite long
and technical, which prompted attempts to find a simpler argument. In [1] Barto gave a simpler proof using the absorbing
subuniverses techniques. In the present paper we give another, more elementary, proof that applies the reduction suggested
in [22].

As in the majority of dichotomy results the solution algorithm and the proofs heavily use the algebraic approach to the
CSP developed in [6,7,20,18]. This approach relates a constraint language to a collection of polymorphisms of the language,
that is, operations on the same set that preserves all the relations from the language, and uses polymorphisms of specific
types to identify constraint languages solvable in polynomial time. For example, to characterize CSPs on a 2-element set

E-mail address: abulatov@sfu.ca.
1 This research is supported by an NSERC Discovery Grant.

http://dx.doi.org/10.1016/j.jcss.2015.07.004
0022-0000/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jcss.2015.07.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
mailto:abulatov@sfu.ca
http://dx.doi.org/10.1016/j.jcss.2015.07.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcss.2015.07.004&domain=pdf

348 A.A. Bulatov / Journal of Computer and System Sciences 82 (2016) 347–356

solvable in polynomial time [23] it suffices to consider only 4 types of operations on a 2-element set: constant, semilattice
(conjunction and disjunction), majority ((x ∧ y) ∨ (y ∧ z) ∨ (z ∧ x)), and affine (x − y + z). The same types of operations
characterize the complexity of conservative CSPs, except that constant operations cannot be polymorphisms of conservative
languages. In a simplified form the main result we prove is

Theorem 1.1. (See [2,4].) Let � be a constraint language on a set A. The conservative CSP using relations from � can be solved in
polynomial time if for any 2-element subset {a, b} ⊆ A there is an operation f on A, a polymorphism of �, such that f on {a, b} is
either a semilattice operation, or a majority operation, or an affine operation. Otherwise this CSP is NP-complete.

We give a new nearly complete proof of Theorem 1.1. The only statements we reuse in this paper are Proposition 2.2
that we borrow from [2] and the results of Section 4.2.

The problem of verifying the conditions of Theorem 1.1, the so-called Metaproblem, has been considered in [2]. Specifi-
cally, if A is fixed then, given a constraint language �, the tractability of the conservative CSP using relations from � can be
checked in polynomial time. If A is not fixed and constraint language is given through its polymorphisms, the Metaproblem
is also polynomial time (it also follows from [15]). Finally, the complexity of the Metaproblem is open if the problem is
given by a set A and a constraint language � on it.

Outline of the proof As well as in [2], the solution algorithm and the proof rely upon a classification of pairs of elements
of the base set A with respect to the constraint language � into three types, semilattice, majority and affine (see, the next
section). Using this classification we define affine-semilattice (as-)components of A as minimal subsets of A that do not
separate semilattice and affine pairs.

The main step of the algorithm is a reduction of a CSP instance to a smaller instance, that is, one having smaller domains,
sets of possible values for the variables. The base case of this chain of reductions is an instance, in which all the domains
have no semilattice pair. In this case the problem can be solved using the algorithm from [9], or the algorithm from [17].

If there are domains in an instance that contain proper as-components, then we use the as-component exclusion re-
duction from Section 4.1. This reduction relies on the fact, Lemma 3.6, that in this case we either can restrict the problem
to certain as-components (thus making it smaller) and find a solution this way, or we can find an as-component in one
of the domains such that no solution of the original problem takes a value from it. In the latter case we can remove this
component, and so again reduce the problem to a smaller one.

If all domains are as-components themselves, we show that we can employ the rather sophisticated reduction from [22]
that reduces the size of the domains containing semilattice pairs, see Section 4.2.

2. Definitions and preliminaries

2.1. Constraint satisfaction problems and algebra

By [n] we denote the set {1, . . . , n}. Let A1, . . . , An be sets, any element of A1 × . . . × An is an (n-ary) tuple. Tuples will
be denoted in boldface, say, a, and the ith component of a will be referred to as a[i]. An n-ary relation over A1, . . . , An is
any set of tuples over these sets. For a set I = {i1, . . . , ik} ⊆ [n], a tuple a ∈ A1 × . . . × An , and a relation R ⊆ A1 × . . . × An ,
by prI a we denote the tuple (a[i1], . . . , a[ik]), the projection of a on I , and prI R = {prI b | b ∈ R} denotes the projection of
R on I . Relation R is said to be a subdirect product of A1, . . . , An if pri R = Ai for all i ∈ [n]. Let I ⊆ [n]. For a ∈ prI R and
b ∈ pr[n]−I R by (a, b) we denote the tuple c such that c[i] = a[i] if i ∈ I and c[i] = b[i] otherwise.

Let A be a collection of finite sets (in this paper we assume A to be finite as well). A constraint satisfaction problem over
A is a triple (V , δ, C), where V is a (finite) set of variables, δ is a domain function, δ : V → A assigning a domain of values
to every variable, and C is a set of constraints. Every constraint is a pair 〈s, R〉, where s = (v1, . . . , vk) is a sequence of
variables from V (possibly with repetitions) called the constraint scope, and R is a relation over δ(v1) × . . . × δ(vk) called
the constraint relation. A mapping ϕ : V → ⋃

A that maps every variable v to its domain δ(v) is called a solution if for every
〈s, R〉 ∈ C we have ϕ(s) ∈ R .

Let W ⊆ V . A partial solution of P on W is a mapping ϕ : W → ⋃
A such that for every constraint 〈s, R〉 ∈ C , s =

(v1, . . . , vk), we have ϕ(s′) ∈ prI R , where I = {i1, . . . , i�} is the set of indices is from [k] such that vis ∈ W , and s′ =
(vi1 , . . . , vi�). The set of all partial solutions on set W is denoted by SW . Problem P is said to be 3-minimal if it contains a
constraint 〈W , SW 〉 for every 3-element W ⊆ V , and for any W1, W2 ⊆ V such that |W1| = |W2| = 3 and |W1 ∩ W2| = 2,
prW1∩W2

SW = prW1∩W2
SW1 ∩ prW1∩W2

SW2 . There are standard polynomial time propagation algorithms (see, e.g. [10]) to
convert any CSP to an equivalent, that is, having the same solutions, 3-minimal CSP.

An introduction into universal algebra and the algebraic approach to CSP can be found in [8,6,7,2]. Here we only mention
several key points. For an algebra A its universe will be denoted by A. Let A be a finite collection of finite similar algebras.
For a basic or term operation f of the class A by f A , A ∈A, we denote the interpretation of f in A. Let A1, . . . , Ak ∈A. A re-
lation R ⊆ A1 × . . .× Ak is a subalgebra of the direct product A1 × . . .×Ak , denoted R ≤A1 × . . .×Ak , if for any basic opera-
tion f (say, it is n-ary) of A and any a1, . . . , an ∈ R the tuple f (a1, . . . , an) = (f A1 (a1[1], . . . , an[1]), . . . , f Ak (a1[k], . . . , an[k]))
belongs to R . In this case f is also said to be a polymorphism of R .

Download English Version:

https://daneshyari.com/en/article/429776

Download Persian Version:

https://daneshyari.com/article/429776

Daneshyari.com

https://daneshyari.com/en/article/429776
https://daneshyari.com/article/429776
https://daneshyari.com

