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We present results on bases of closure systems over residuated lattices, which appear in 
applications of fuzzy logic. Unlike the Boolean case, the situation is not straightforward as 
there are two non-commuting generating operations involved. We present a decomposition 
theorem for a general closure operator and utilize it for computing generators and bases of 
the closure system. We show that bases are not unique and may in general have different 
sizes, and obtain a constructive description of the size of a largest base. We prove that if 
the underlying residuated lattice is a chain, all bases have the same size.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Closure systems play a crucial role in various parts of mathematics and computer science, including algebra, logic, pro-
gramming, databases, data analysis and management of data in general. It is well known that every closure system S in a 
set U , i.e. a system S ⊆ 2U closed with respect to arbitrary intersections, has a unique base. This base, i.e. an inclusion-
minimal subsystem of S that generates S , consists of all the 

⋂
-irreducible sets in S—sets that cannot be obtained as 

intersections of other sets in S . More generally, one may ask for a base of the closure system [T ] generated by a given 
T ⊆ 2U . Again, such a base is unique and consists of the 

⋂
-irreducible members of T . Bases of closure systems, or dually, 

interior systems, are frequently encountered. In formal concept analysis, for instance, determining for a given input binary 
relation I between objects and attributes a minimal relation J such that the concept lattice of J , i.e. the lattice of all fix-
points of the Galois connection induced by J , is isomorphic to the concept lattice of I , is easily rephrased as the problem 
of determining bases of closure systems [6,8]. Another example, dual in that closure systems are replaced by interior sys-
tems, is the row/column-base of a Boolean matrix, which is just the base of the interior system generated by sets whose 
characteristic vectors are just the matrix rows/columns [14].

In this paper, we study bases of L-closure systems [2], which naturally appear when instead of bivalent (0–1, yes-or-no) 
data, the problems at hand involve data with grades from a partially ordered scale L (see e.g. [3–5,9,11,13]). In such a setting, 
sets or—more precisely—characteristic functions A : U → {0, 1} of sets are replaced by their generalizations A : U → L, which 
are called L-sets, and the two-element Boolean algebra on {0, 1} underlying the set calculus is replaced by its appropriate 
generalization L. In accordance with modern fuzzy logic [7,11–13], we take for L an arbitrary residuated lattice, leaving 
Boolean algebras, Heyting algebras, MV-algebras, BL-algebras, and other structures as special cases. In particular, if L =
{0, 1} then L becomes the two-element Boolean algebra and L-closure systems may be identified with ordinary closure 
systems. General L-closure systems represent a non-trivial generalization of ordinary ones. In addition to the fact that 
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L involves intermediary values, i.e. those between 0 and 1, a substantial difference consists in the fact that while the 
only generating operation in ordinary closure systems is intersection, in L-closure systems there are two such operations: 
(infimum-based) intersection of L-sets and (residuum-based) multiplication of L-sets by constants in L, which is degenerate 
in the bivalent case L = {0, 1}. The properties of these operations, in particular the fact that the induced operators do not 
commute (multiplications of intersections is not the same as intersections of multiplications), make the problem of bases 
of L-closure systems non-trivial. For example, as we show in this paper, bases are not unique and in general, may have 
different sizes.

2. Preliminaries: residuated lattices, L-sets, L-closure systems

Recall that a (complete) residuated lattice [3,7,13,16] is a structure L = 〈L, ∧, ∨, ⊗, →, 0, 1〉 such that

(i) 〈L, ∧, ∨, 0, 1〉 is a (complete) lattice, i.e. a partially ordered set in which arbitrary infima and suprema exist (the lattice 
order is denoted by ≤; 0 and 1 denote the least and greatest element, respectively);

(ii) 〈L, ⊗, 1〉 is a commutative monoid, i.e. ⊗ is a binary operation which is commutative, associative, and a ⊗ 1 = a for 
each a ∈ L;

(iii) ⊗ and → satisfy adjointness, i.e. a ⊗ b ≤ c iff a ≤ b → c.

Throughout the paper, L denotes an arbitrary complete residuated lattice. Common examples of complete residuated lattices 
include those defined on the real unit interval or on a finite chain L = {0, 1n , . . . , n−1

n , 1}. For instance, for L = [0, 1], we 
can use any left-continuous t-norm for ⊗, such as minimum, product, or Łukasewicz, and the corresponding residuum →. 
Residuated lattices are commonly used in fuzzy logic [3,11,13], where the grades a ∈ L are interpreted as degrees of truth 
and the operations ⊗ (multiplication) and → (residuum) play the role of the (truth function of) conjunction and implication, 
respectively. The only residuated lattice with L = {0, 1} coincides with the two-element Boolean algebra of classical logic in 
which case ⊗ and → are the truth functions of classical conjunction and implication. For more information on residuated 
lattices we refer to [3,7,13,16].

Given L, one may consider L-sets, i.e. generalizations of (characteristic functions of) ordinary sets, and their algebra. 
An L-set (or L-fuzzy set) in a universe set U is a mapping A : U → L assigning to every u ∈ U an element A(u) ∈ L
interpreted as the truth degree to which u belongs to A. The set of all L-sets in U , denoted by LU , is equipped with 
operations extending the classical set operations. For instance, the ∧-based intersection is defined by (A ∧ B)(u) = A(u) ∧
B(u). For A, B ∈ LU , the degree of inclusion of A in B is defined by S(A, B) = ∧

u∈U (A(u) → B(u)). If S(A, B) = 1, which is 
equivalent to A(u) ≤ B(u) for each u ∈ U , one writes A ⊆ B and says that A is included in B . For more details on L-sets, we 
refer to [3,11,13].

A system S ⊆ LU is called an L-closure system in U [2] if

– S is closed under left →-multiplications, i.e. a → A ∈ S for each a ∈ L and A ∈ S;
– S is closed under 

∧
-intersections, i.e. if A j ∈ S ( j ∈ J ) then 

∧
j∈ J A j ∈ S .

Here, a → A and 
∧

j∈ J A j are defined by

(a → A)(u) = a → A(u) and (
∧

j∈ J A j)(u) = ∧
j∈ J A j(u)

for any u ∈ U .

Remark 1. Since 0 → a = 1 and 1 → a = a for any a ∈ L, we have 0 → A = U and 1 → A = A for each A ∈ LU . More-
over, since U is the intersection of the empty system of L-sets, it belongs to any L-closure system. Therefore, if L is the 
two-element Boolean algebra, L-closure systems are just systems closed under 

∧
-intersections and may be identified with 

ordinary closure systems. As a result, the notion of an L-closure system generalizes the ordinary notion of a closure system.

Let us also note that, analogously to the ordinary case, L-closure systems in U are in one-to-one correspondence with 
L-closure operators in U , i.e. mappings C : LU → LU satisfying

A ⊆ C(A), S(A, B) ≤ S(C(A), C(B)), and C(A) = C(C(A)),

for every A, B ∈ LU . Namely, L-closure systems are just the sets of fixed points of L-closure operators [2].

3. Results

3.1. Bases of L-closure systems

Obviously, the set LU is an L-closure system in U (the largest one) and one can easily see that an intersection of an 
arbitrary system of L-closure systems is an L-closure system. It hence follows from classical results [6] that for every system 
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