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We define extensions of the full branching-time temporal logic CTL∗ in which the path
quantifiers are relativised by formal languages of infinite words, and consider its natural
fragments obtained by extending the logics CTL and CTL+ in the same way. This yields
a small and two-dimensional hierarchy of temporal logics parametrised by the class of
languages used for the path restriction on one hand, and the use of temporal operators
on the other. We motivate the study of such logics through two application scenarios: in
abstraction and refinement they offer more precise means for the exclusion of spurious
traces; and they may be useful in software synthesis where decidable logics without the
finite model property are required. We study the relative expressive power of these logics
as well as the complexities of their satisfiability and model-checking problems.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Branching-time temporal logics are some of the most well-known and used specification languages for reactive systems.
The most prominent ones are the logics CTL [12,15] and CTL∗ [16]. While CTL has nice algorithmic properties – model check-
ing is p-complete and satisfiability checking is exptime-complete – its expressive power is very weak. CTL∗ amends this by
unifying CTL with the linear-time temporal logic LTL [34]. This way, it can express important properties like fairness which is
not possible in CTL. This comes at a certain price, though. Model checking CTL∗ is naturally at least as expensive as it is for
LTL. In fact it is no more expensive either, thus, it is pspace-complete [35]. The additional complexity introduced by merging
branching-time with linear-time formalisms shows through in satisfiability checking which is 2-exptime-complete [39,17].

Temporal logics in general, and with it such branching-time logics, have become prominent because of the success that
model checking – an automatic program verification method for correctness properties specified in temporal logics – has had
over the past decades [22]. In particular, model checking was very successful in hardware verification because hardware can
be modelled by finite-state systems. Verifying infinite-state systems has become more and more important in the domain
of program verification since, and this is mainly due to the growing importance of software in reactive systems. Note that
software usually leads to infinite-state systems because of the use of unbounded data structures, recursive functions, etc.

The model-checking complexities mentioned above hold with respect to finite models. Clearly, model-checking infinite-
state programs is undecidable in general but it remains decidable for certain classes of infinite-state programs, e.g. push-
down processes, and weak temporal logics like CTL and LTL. It is still just pspace-complete for LTL but exptime-complete for
CTL [9,41].
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Several extensions and variations of such branching-time logics have been considered since, usually with special purposes
in mind: Timed CTL has been introduced in order to verify properties in which real-time effects play a crucial role [2];
action-based CTL considers models with more than one accessibility relation [33]; Graded CTL adds some possibility of
counting [7]; etc.

Here we consider extensions of branching-time logics in which the path quantifiers can be relativised to traces that
belong to a formal language of ω-words. This defines a hierarchy of extensions parametrised by the class of formal languages
which can be used for the relativisation. In Section 2 we introduce these logics – based on CTL, CTL∗ and the lesser known
CTL+ which is known to be only as expressive as CTL [15] but exponentially more succinct [42,1,26].

Section 3 motivates the use of these logics through two scenarios: abstraction and software synthesis. Still, the main
focus of this paper are the logics themselves. Here we study the hierarchy of expressive power we obtain from these logics
(Section 5) with respect to different classes of formal languages, namely the ω-regular ones, the ω-context-free ones and
the ω-visibly pushdown ones. We study their the computational complexity and decidability of their satisfiability problems
(Section 6) and of their model-checking problems (Section 7).

2. CTL∗ with path relativisation

2.1. Transition systems

Models of CTL∗ with path relativisation are transition systems which – as opposed to ordinary CTL∗ models and like
models of action-based CTL – also have labelled edges and need not be total. Let Σ be a finite alphabet and P be a
countably infinite set of atomic propositions. A transition system is a tuple T = (S,→, λ) where S is a set of states, → ⊆ S×
Σ × S is the transition relation, and λ : S → 2P labels each state with a finite set of propositions that are true in this state.
We write s a−→ t instead of (s,a, t) ∈ →.

In order to simplify technical details, we assume that Σ always contains a special character d and that each transition
system has a distinct state end with s d−→ end for every s including end itself. Furthermore, end has no other incoming or
outgoing transitions than these. This means that transition systems are total in the sense that in any state at least a d-action
is possible. However, afterwards nothing else is possible any more. Thus, taking a d-transition somehow indicates being in
a deadlock state.

A path in T is an infinite sequence π = s0,a0, s1,a1, . . . , alternating between states and edge labels such that si
ai−→ si+1

for all i ∈ N. The assumption above ensures that no maximal paths other than infinite ones exist. We write ΠT (s) for the
set of all paths through T that start in s. For i ∈N, the denote by π↑i the ith suffix of π , i.e. si,ai, si+1, . . . .

A path π = s0,a0, s1,a1, . . . determines in a unique way its trace – the ω-word a0a1a2 . . . over Σ . Abusing notation we
will identify a path with its trace of edge labels and sometimes simply write π ∈ L for a path π and a language L.

2.2. Formal languages and automata

As usual, let Σ be a finite alphabet. Then Σω denotes the set of all infinite words over Σ ; ε denotes the empty word.
A formal ω-language, or just language from now on, is a subset of Σω . We are particularly interested in three classes of
languages: the ω-regular ones ωREG, the ω-context-free ones ωCFL, and the ω-visibly pushdown ones ωVPL.

In order to be able to use languages in formulas they need to be represented syntactically. Here we choose automata for
this purpose: non-deterministic Büchi automata for ωREG [11], non-deterministic Büchi pushdown automata for ωCFL [36],
and non-deterministic Büchi visibly pushdown automata for ωVPL [3].

A non-deterministic Büchi automaton is a tuple A = (Q ,qI , δ, F ) where Q is a finite set of states, qI ∈ Q is a designated
starting state, F ⊆ Q is a designated set of acceptance states, and δ ⊆ Q × Σ × Q is the transition relation. A run of A on a
word w = a0a1 . . . ∈ Σω is a sequence of states q0,q1, . . . such that q0 = qI and (qi,ai,qi+1) ∈ δ for all i ∈ N.

A non-deterministic Büchi pushdown automaton (ω-PDA) is a tuple A= (Q ,Γ,⊥,qI , δ, F ) where Q , qI and F are as above,
Γ is a finite stack alphabet, ⊥ ∈ Γ is a designated bottom-of-stack symbol, and δ is a finite subset of Q × Γ × Σ × Q × Γ ∗ .
A run of A on a word w = a0a1 . . . is a sequence of pairs of states and finite stacks over Γ of the form (q0, γ0), (q1, γ1), . . .

such that q0 = qI , γ0 = ⊥, and for all i ∈ N: γi = γ B , γi+1 = γ γ ′ and (qi, B,ai,qi+1, γ
′) ∈ δ for some B ∈ Γ and some

γ ,γ ′ ∈ Γ ∗ .
For the last kind of automaton we need a fixed partition of Σ into three disjoint parts Σpush , Σpop , and Σint . A non-

deterministic Büchi visibly pushdown automaton is a tuple A= (Q ,Γ,⊥,qI , δ, F ) as above with the exception of

δ ⊆ (Q × Γ × Σpush × Q × Γ ) ∪ (Q × Γ × Σpop × Q ) ∪ (Q × Γ × Σint × Q )

A run is a sequence of state-stack pairs as above with the provision that for all i ∈ N one of the following four cases holds.

• ai ∈ Σpush , γi = γ B , γi+1 = γ BC for some γ ∈ Γ ∗ , B, C ∈ Γ , and (qi, B,ai,qi+1, C) ∈ δ.
• ai ∈ Σpop , γi = γ B for some γ ∈ Γ ∗ , B ∈ Γ , γi+1 = γ , and (qi, B,ai,qi+1) ∈ δ.
• ai ∈ Σpop , γi = γi+1 = ⊥, and (qi,⊥,ai,qi+1) ∈ δ.
• ai ∈ Σint , γi = γ B for some γ ∈ Γ ∗ , B ∈ Γ , γi+1 = γi and (qi, B,ai,qi+1) ∈ δ.
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