
Journal of Computer and System Sciences 80 (2014) 457–467

Contents lists available at ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

On the role of complementation in implicit language
equations and relations

Adrian Ionescu a,∗, Ernst L. Leiss b

a Department of Mathematics and Computer Science, Wagner College, Staten Island, NY 10301, United States
b Department of Computer Science, University of Houston, Houston, TX 77204, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 2 July 2001
Accepted 5 September 2013
Available online 11 September 2013

Keywords:
Languages
Equations
Relations
Implicit
Complementation

We solve systems of boolean implicit equations and relations with union and complemen-
tation. If the languages are regular, we determine whether a system of implicit boolean
equations or relations has solutions. If there is a solution, we provide an effective construc-
tion of a (regular) solution. We give representations for maximal and minimal solutions.
Moreover, we also solve the problem of uniqueness of solutions as well as whether in-
finitely many solutions exist.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Language equations have a long history, starting with the most basic equation X = L · X ∪ M whose solution is L∗M
(unique if L does not contain the empty word λ) and which is usually used to show that for any finite automaton accepting
a regular language R , there exists a regular expression α that denotes exactly R . Another application of language equations
(here boolean language equations) is used in the characterization of sequential networks [1]. This hints at a fundamental
problem in how language equations [4] are generally viewed – as tool to do other things rather than as an object of interest
in their own right. This persists in spite of the denotational elegance of equations which makes use of the versatility of
expressions, with their inherent ability of accommodating a wide variety of operators, in contrast to the more “operational”
approach taken by automata. But even this slights the expressive power of language equations, as one can see from the
following observation. It is well known that permitting complementation in regular expressions (which are then often called
extended regular expressions) does not extend the class of languages denoted in this way; it only increases the succinctness
of the notation [10]. In other words, the language denoted by an extended regular expression is still regular. This is no
longer the case when studying equations, as in [7] a very simple (explicit) language equation (indeed over a one-letter
alphabet!) involving concatenation and complementation was shown to have a unique non-regular solution. In other words,
when considering equations permitting complementation does increase their denotational power, in contrast to expressions
where it does not [8]. This then is the underlying motivation for the work reported below – we show how to handle
complementation in the context of implicit equations. Note that the question of explicit equations has been addressed in
[3,6].

In the remainder of this section we first amplify our comments above about the contributions of language equations,
then we briefly sketch our notation. In Section 2, we study comprehensively implicit equations where the operators are
all boolean operators, paying special emphasis to determining existence and uniqueness of solutions as well as to the

* Corresponding author.
E-mail addresses: ionescu@wagner.edu (A. Ionescu), coscel@cs.uh.edu (E.L. Leiss).

0022-0000/$ – see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jcss.2013.09.001

http://dx.doi.org/10.1016/j.jcss.2013.09.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
mailto:ionescu@wagner.edu
mailto:coscel@cs.uh.edu
http://dx.doi.org/10.1016/j.jcss.2013.09.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcss.2013.09.001&domain=pdf


458 A. Ionescu, E.L. Leiss / Journal of Computer and System Sciences 80 (2014) 457–467

complexity of the problems solved. In Section 3, we extend these results to containment, in addition to equality. In Section 4
we work out several examples; Section 5 gives the conclusion.

Language relations are defined by using constant languages and a set of operations. There are five areas in which impor-
tant contributions have been made [9]:

1. The complete solution of explicit equations (each variable having a single equation) with union and left-concatenation.
2. A comprehensive coverage of complementation for explicit equations with union and left-concatenation.
3. The complete solution of explicit equations over a one-letter alphabet with union, concatenation, and star.
4. Certain explicit equations over a one-letter alphabet with concatenation and complementation having only non-context-

free solutions.
5. The complete solution of implicit equations and relations with union and left-concatenation.

In order to define languages we start with an alphabet A. The choice of the alphabet is quite important. For example,
if A = {a} all resulting languages L ⊆ A∗ are commutative. We also choose a set of constant languages (CONST). In general,
any subset of the set of all languages over A can be chosen for CONST. However, for practical reasons the well known
classes of languages are usually considered: regular languages (REG), context-free languages, context-sensitive languages,
recursive languages, recursive enumerable languages. We will mainly be interested in REG because of their “nice” closure
properties [5].

The basic language operations (OP) are the following ones: union (∪), intersection (∩), complementation (−), concatena-
tion (·), star (∗). In our case, we will mainly be interested in union and complementation (and therefore intersection). As
noted in [9], complementation is a difficult operation. To mention just one reason, note that allowing complementation in
regular expressions will result in nonelementary complexity [10]. For other results involving maximal and minimal solutions
for language equations see [2].

We define the set EXA(CONST;OP;X1, . . . , Xn) of expressions in the constant languages CONST and in the variables
{X1, . . . , Xn} with operations in OP. For α ∈ EXA(CONST;OP;X1, . . . , Xn) and L ∈ CONST one defines explicit equations
Xi = α(X1, . . . , Xn) and implicit equations L = α(X1, . . . , Xn).

For example, the original language equation X = L · X ∪ M is an explicit equation X = α with α an element of
EXA(CONST;OP;X) where CONST is the class of all languages over the alphabet A and OP is the set consisting of the opera-
tors union and concatenation. Similarly, the equation over a one-letter alphabet whose solution is non-regular (and therefore

non-context free) is X = β with β given by a · X · X · X · X · X · X · X · X . Thus, β is an expression of EXA(CONST;OP;X) where
CONST is the set of all languages over the alphabet {a} and OP consists of the operators concatenation and complementation.
Finally, here is an example of an implicit equation: ab∗ = γ where γ = a · X ∪ b · Y is an expression in EXA(CONST;OP;X)
where the alphabet A is arbitrary, CONST is the class of all regular languages over A, and OP consists of union and concate-
nation. (This last equation has the unique solution X = b∗ and Y = ∅.)

2. Implicit equations with union and complementation

Let α be an expression in EXA(CONST;OP;X1, . . . , Xn), and assume that OP consists of union and complementation and
that CONST=REG. Let us consider the following system of implicit boolean equations:

Li = αi(X1, . . . , Xn), i = 1,2, . . . ,m. (1)

Note that, without loss of generality, one can assume that the αi are boolean functions only in the variables {X1, . . . , Xn}.
Indeed, if constant languages appear in αi , each such language L can be replaced by the extra variable Y and another
equation L = Y is added to the system. For example, a∗ = X ∪a can be replaced by the equivalent system a∗ = X ∪ Y , a = Y .
The following two propositions are immediate:

Proposition 1. If system (1) of implicit boolean equations has a solution (S1, . . . , Sn), then for all w ∈ A∗ and i = 1,2, . . . ,m

Li ∩ {w} = αi
(

S1 ∩ {w}, . . . , Sn ∩ {w}) ∩ {w} (2)

is also true.

Conversely, one also obtains the following result

Proposition 2. If for all w ∈ A∗ , system (2) has a solution given by

(S w,1, . . . , S w,n),

then system (1) has a solution (S1, . . . , Sn) given by

Si =
⋃

w∈A∗
S w,i .



Download English Version:

https://daneshyari.com/en/article/429833

Download Persian Version:

https://daneshyari.com/article/429833

Daneshyari.com

https://daneshyari.com/en/article/429833
https://daneshyari.com/article/429833
https://daneshyari.com

