
Journal of Computer and System Sciences 82 (2016) 551–563

Contents lists available at ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

Sorting nine inputs requires twenty-five comparisons

Michael Codish a, Luís Cruz-Filipe b,∗, Michael Frank a, Peter Schneider-Kamp b

a Department of Computer Science, Ben-Gurion University of the Negev, Israel
b Department of Mathematics and Computer Science, University of Southern Denmark, Denmark

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 October 2014
Received in revised form 10 November 2015
Accepted 30 November 2015
Available online 11 December 2015

Keywords:
Sorting networks
SAT solving
Computer-assisted proofs
Symmetry breaking

This paper describes a computer-assisted non-existence proof of 9-input sorting networks 
consisting of 24 comparators, hence showing that the 25-comparator sorting network 
found by Floyd in 1964 is optimal. As a corollary, the 29-comparator network found by 
Waksman in 1969 is optimal when sorting 10 inputs.
This closes the two smallest open instances of the optimal-size sorting network problem, 
which have been open since the results of Floyd and Knuth from 1966 proving optimality 
for sorting networks of up to 8 inputs.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

General-purpose sorting algorithms are based on comparing, and possibly exchanging, pairs of inputs. If the order of 
these comparisons is predetermined by the number of inputs to sort and does not depend on their concrete values, then 
the algorithm is said to be data-oblivious. Such algorithms are well suited for e.g. parallel sorting or secure multi-party 
computations.

Sorting networks are a classical formal model for such algorithms [7,17,23], where n inputs are fed into networks of 
n channels, which are connected pairwise by comparators. Each comparator takes the two inputs from its two channels, 
compares them, and outputs them sorted back to the same two channels. Consecutive comparators can be viewed as a 
“parallel layer” if no two touch the same channel. A comparator network is a sorting network if the output on the n
channels is always the sorted sequence of the inputs.

Ever since sorting networks were introduced, there has been a quest to find optimal sorting networks for specific given 
numbers of inputs: optimal size (minimum number of comparators) as well as optimal depth (minimum number of layers) 
networks. In this paper we focus on optimal-size sorting networks.

Optimal-size and optimal-depth sorting networks for n ≤ 8 can already be found in Section 5.3.4 of [17]. For optimal 
depth, in 1991 Parberry [21] proved optimality results for n = 9 and n = 10, which in 2014 were extended by Bundala and 
Závodný [8] to 11 ≤ n ≤ 16. Both approaches are based on breaking symmetries among the first (two) layers of comparators.

For optimal size, the case of n = 9 has been the smallest open problem ever since Floyd and Knuth’s result for optimal-
size sorting networks [15] in 1966. At first, this might be surprising: is optimal size really harder than optimal depth? 
However, a comparison of the sizes of the search spaces for the optimal-size and optimal-depth problems for n = 9 sheds 
some light on the issues. The smallest known sorting network for 9 inputs has size 25. For proving/disproving its opti-

* Corresponding author.
E-mail addresses: mcodish@cs.bgu.ac.il (M. Codish), lcf@imada.sdu.dk (L. Cruz-Filipe), frankm@cs.bgu.ac.il (M. Frank), petersk@imada.sdu.dk

(P. Schneider-Kamp).

http://dx.doi.org/10.1016/j.jcss.2015.11.014
0022-0000/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jcss.2015.11.014
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
mailto:mcodish@cs.bgu.ac.il
mailto:lcf@imada.sdu.dk
mailto:frankm@cs.bgu.ac.il
mailto:petersk@imada.sdu.dk
http://dx.doi.org/10.1016/j.jcss.2015.11.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcss.2015.11.014&domain=pdf


552 M. Codish et al. / Journal of Computer and System Sciences 82 (2016) 551–563

mality, we need to consider all comparator networks of 24 comparators. There are 36 = (9 × 8)/2 possibilities to place 
each comparator on 2 out of 9 channels. Thus, the search space for the optimal-size problem on 9 inputs consists of 
(36)24 ≈ 2.2 × 1037 comparator networks.

In comparison, to show that the optimal-depth sorting network for 9 inputs is 7, one must show that there are no 
sorting networks of depth 6. The number of ways to place comparators in an n-channel layer corresponds to the number 
of matchings in a complete graph with n nodes [8], and for n = 9 this number is 2620. Thus, the search space for the 
optimal-depth problem on 9 inputs is “just” 26206 ≈ 3.2 ×1020. In addition, the layering allows for some beautiful symmetry 
breaking [8,11] on the first two layers, reducing the search space further to approx. 1015 comparator networks.

For the optimal-depth problem, all recent attempts we are aware of [8,20] have used encodings to the satisfiability 
problem of propositional logic (SAT). Likewise, in this paper we describe a SAT encoding for the optimal-size problem. This 
SAT encoding was able to reproduce all known results for n ≤ 6. Unfortunately, the SAT encoding alone did not scale to 
n = 9, with state-of-the-art SAT solvers making no discernible progress even after weeks of operation.

To solve the open problem of optimality for n = 9, we had to invent symmetry breaking techniques for reducing the 
search space to a manageable size. The general idea is similar to the one taken in [8,11] for the optimal-depth sorting 
network problem, but involves the generation of minimal sets of non-redundant comparator networks for a given number 
of comparators, one comparator at a time. Redundant networks (i.e., networks that sort less than others of the same size or 
that are equivalent to another network already in the set) are pruned. For each pruned network, a witness is logged, which 
can be independently verified. Our symmetry breaks benefit from the idea of partitioning binary sequences according to the 
number of 1s contain, which has been discussed e.g. in [6].

For n = 9, we used this method, which we call generate-and-prune, to reduce the search space from approx. 2.2 × 1037

to approx. 3.3 × 1021 comparator networks, all of which can be obtained by extending one of 914,444 representative 
14-comparator networks. This process took a little over one week of computation, and all of the resulting problems could 
be handled efficiently by our SAT encoding in less than 12 hours (in total). All computations, if not specified otherwise, 
were performed on a cluster with a total of 144 Intel E8400 cores clocked at 2 GHz each, able to run a total of 288 parallel 
threads.

The generate-and-prune method can also be used in isolation to decide this open problem: amongst the set of all 
comparator networks (modulo equivalence and non-redundancy) there is only one single sorting network, and it is of 
size 25. To obtain this result, we continued running the generate-and-prune method for five more days in order to check 
the validity of the results obtained through the SAT encoding independently, thereby instilling a higher level of trust into 
the computer-assisted proof. This paper presents both techniques: the first one based completely on the generate-and-prune 
approach, and the second, hybrid, method combining generate-and-prune with SAT encoding. It is the second approach that 
solves the nine-input case in the least amount of time, and also shows the potential to scale.

Once determining that 25 comparators is optimal for 9 inputs, we move on to consider the case of 10 inputs. Using a 
result of Van Voorhis from 1971 [26], we know that the minimum number of comparators for sorting 10 inputs is larger 
by at least 4 than for 9 inputs. As a sorting network with 29 comparators on ten inputs (attributed to Waksman) is known 
since 1969 [17], our result implies its optimality.

The next section introduces the relevant concepts on sorting networks together with some notations. The generate-and-
prune algorithm is introduced in Section 3, while its optimization and parallelization are discussed in detail in Section 4. 
The SAT encoding is explained and analyzed in Section 5. In Section 6 we reflect on the validity of the proof, and we 
conclude in Section 7. This paper is an extended version of [10].

2. Preliminaries on sorting networks

A comparator network C with n channels and size k is a sequence of comparators C = (i1, j1); . . . ; (ik, jk) where each 
comparator (i�, j�) is a pair of channels 1 ≤ i� < j� ≤ n. The size of a comparator network is the number of its comparators. 
If C1 and C2 are comparator networks with n channels, then C1; C2 denotes the comparator network obtained by concate-
nating C1 and C2; if C1 has m comparators, it is a size-m prefix of C1; C2. An input x̄ = x1 . . . xn ∈ {0, 1}n propagates through 
C as follows: x̄0 = x̄, and for 0 < � ≤ k, x̄� is the permutation of x̄�−1 obtained by interchanging x̄�−1

i�
and x̄�−1

j�
whenever 

x̄�−1
i�

> x̄�−1
j�

. The output of the network for input x̄ is C(x̄) = x̄k , and outputs(C) = {
C(x̄)

∣∣ x̄ ∈ {0,1}n
}

. The comparator 
network C is a sorting network if all elements of outputs(C) are sorted (in ascending order).

Our focus on binary sequences is justified by the zero-one principle (e.g. [17]), which states that a comparator network 
sorts all elements of {0, 1}n iff it sorts all sequences of length n over any totally ordered set, e.g. integers.

Images (a) and (b) on the right depict sorting networks on 4 channels, 
each consisting of 6 comparators. The channels are indicated as horizontal 
lines (with channel 4 at the bottom), comparators are indicated as vertical 
lines connecting a pair of channels, and input values are assumed to propagate from left to right. The sequence of compara-
tors associated with a picture representation is obtained by a left-to-right, top-down traversal. For example the networks 
depicted above are: (a) (1, 2); (3, 4); (1, 4); (1, 3); (2, 4); (2, 3) and (b) (1, 2); (3, 4); (2, 3); (1, 2); (3, 4); (2, 3).

The optimal-size sorting network problem is about finding the smallest size, S(n), of a sorting network on n channels. 
In [15], Floyd and Knuth present sorting networks of optimal size for n ≤ 8 and prove their optimality. Until today, the min-
imal size S(n) of a sorting network on n channels was known only for n ≤ 8; for greater values of n, there are upper bounds 



Download English Version:

https://daneshyari.com/en/article/429970

Download Persian Version:

https://daneshyari.com/article/429970

Daneshyari.com

https://daneshyari.com/en/article/429970
https://daneshyari.com/article/429970
https://daneshyari.com

