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In this paper we show how to model syntax and semantics of stochastic processes with 
continuous states, respectively as algebras and coalgebras of suitable endofunctors over the 
category of measurable spaces Meas. Moreover, we present an SOS-like rule format, called 
MGSOS, representing abstract GSOS over Meas, and yielding fully abstract universal semantics, 
for which behavioral equivalence is a congruence. An MGSOS specification defines how 
semantics of processes are composed by means of measure terms, which are expressions 
specifically designed for describing finite measures. The syntax of these measure terms, 
and their interpretation as measures, are part of the MGSOS specification. We give two 
example applications, with a simple and neat MGSOS specification: a “quantitative CCS”, 
and a calculus of processes living in the plane R2 whose communication rate depends on 
their distance. The approach we follow in these cases can be readily adapted to deal with 
other quantitative aspects.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Process algebras are widely used for compositional modeling of nondeterministic, communicating, mobile systems. States 
of these systems are represented by syntactic-defined terms P , Q , . . .; the semantics is represented by means of a (labelled) 
transition relation of the form P α−→ Q between these terms, where labels represent what can be observed by the environ-
ment. According to the Structural Operational Semantics (SOS) paradigm [38], this relation is specified by a set of inference 
rules whose application is driven by the syntactic structure of processes. In order to guarantee important properties about 
the resulting semantics, several formats for these SOS specifications have been studied. A well-known format is the so-
called GSOS [13], which guarantees the bisimilarity to be a congruence. This framework is particularly appealing because 
it makes languages easier to understand, compare, and extend. In particular, a process algebra can be easily extended with 
new operators, without the need of time-consuming and error-prone proofs of congruence results.

In recent years this successful approach has been applied also to stochastic and probabilistic systems, which have received 
increasing attention due to their important applications to performance evaluation, systems biology, etc. [27,14,26,21]. In 
order to deal with these quantitative aspects, the transition relation has to be modified by adding some real-valued param-
eter; often it has the form P

α,r−−→ Q , meaning that “P can do α and continue as Q , with probability (or rate) r”. Bartels 
[10] and Klin and Sassone [31] have investigated rule formats for discrete probabilistic and stochastic systems, respectively, 
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which guarantee probabilistic/stochastic bisimilarity to be a congruence. This approach has been further generalized in [34], 
with a rule format for general discrete, non-deterministic weighted labelled transition systems.

However, these formats do not cover the case of systems whose behavior is influenced by some continuous data, which 
may change as the system evolves. Typical examples are systems with spatial/geometric informations (e.g., in wireless 
networks, distance may affect data access and rates; in biological models, diffusion alters the signaling pathways, etc.), 
or intensional parameters like temperature, pressure, concentrations, etc.. A proper representation of the states of these 
systems must include these continuous data, hence the state space is a continuous set, and a term language representing 
these states cannot be countable any longer; see e.g. [15,30]. Formally, this means that we cannot use transitions of the 
form P

α,r−−→ Q , because the rate of reaching a precise Q from P may be zero, yet the rate of reaching any neighborhood 
of Q may be nonzero.

This leads us to consider transitions of the form P α−→ μ, where μ is a (finite) measure of the possible outcomes of P , 
as in [12]. This measure specifies a quantitative (probabilistic, stochastic, . . . ) information about the different transitions. 
Stochastic calculi with a similar transition format have been considered also in [16,6] for dealing with specific equational 
stochastic systems, and with behavioral equivalences which are proved to be congruences. However, differently from the 
case of discrete processes, these SOS specifications and results are rather ad hoc, not based on any general framework for 
operational descriptions.

In order to cover this gap, in [7] we introduced a new rule format for probabilistic systems with continuous states, 
which guarantees that the resulting probabilistic behavioral equivalence is a congruence. In this paper we continue this line 
of research, by focusing on stochastic systems. More precisely, we present a GSOS rule format for stochastic systems with 
continuous states, which ensures that the resulting stochastic behavioral equivalence is a congruence.

In order to achieve this goal, we follow the bialgebraic approach [44]. This approach relies on the fact that the syntax 
of processes can be represented as the initial algebra of a suitable signature functor, and their semantics as coalgebras of a 
suitable “behavioral” functor. The key idea of the bialgebraic framework is that rule specification systems can be formulated 
in terms of certain natural transformations called distributive laws between the signature and the behavioral functors. These 
distributive laws allow us to define a fully abstract denotational semantics with respect to the behavioral equivalence: two 
processes have the same denotation if and only if their behavior is the same. Moreover, this equivalence is a congruence 
and (if the behavioral functor preserves weak pullbacks) coincides with bisimilarity.

Usually, the bialgebraic construction has been applied in the Set or variations thereof like presheaf categories [44,23,24,
33]. This construction has been applied also to discrete probabilistic and stochastic systems: in [10], labelled probabilistic 
transition systems are shown to be coalgebras of the functor (Dω(_) + 1)L : Set → Set; in [31] labelled stochastic transition 
systems are shown to be coalgebras of the functor Rω(_)L : Set → Set where L is the set of labels, and Rω is the functor 
over Set such that Rω(X) is the set of finitely supported measures over X . A more uniform and general treatment in the 
case of weighted labelled transition systems has been developed in [34].

However, in order to apply this approach to our setting we have to solve several issues. The crucial point is that our 
semantics have to deal with the probability of sets of possible outcomes, rather than of single states. This corresponds 
to move to the category Meas of measurable spaces and measurable functions, as advocated in [20,22,37]; for instance, the 
behavior of a stochastic system with continuous state can be modeled as a coalgebra of the functor �(_)L : Meas → Meas, 
where � associates with any measurable space (X, Σ) the set of finite measures over it.

Porting the bialgebraic approach from Set to Meas is not straightforward. First, the behavioral functor � does not pre-
serve weak pullbacks [36,48]; in fact, bisimilarity is strictly included in behavioral equivalence [43]. Hence, we focus on 
behavioral equivalence instead of bisimilarity.

Secondly, Meas is not known to be Cartesian closed; as a consequence, most constructions which can be carried out 
on Set and other topoi cannot be ported easily to Meas. In particular, we cannot follow Bartels’s approach for deriving a 
rule format from a distributive law [10], because the extra structure given by σ -algebras does not allow one to decompose 
natural transformations of complex type as collections of natural transformations of simpler type.

Moreover, a SOS rule format should be as easy to apply, and as syntactic, as possible. In particular, it has to define a 
system’s behavior in terms of those of its subsystems. In traditional GSOS format, this is reflected by the fact that the target 
of a transition is a process built from the components of the source process, and their corresponding semantics. In our 
settings, the target of a transition P α−→ μ is not a process term, but a real-valued function over some measurable space, 
without any syntactic structure to leverage. In order to circumvent this problem, we propose to use measure terms, i.e., 
syntactic expressions purposely introduced to denote measures. The syntax of measure terms, and their interpretation as 
measures, is part of the specification. This new degree of freedom allows us to capture many examples from the literature.

Summarizing, we present a new operational semantics specification format, which we call Measure GSOS format; a MGSOS 
specification is given by a set of rules for deriving transitions of the form P α−→ μ where both P and μ are syntactic objects 
(of possibly different languages), together with an interpretation of these measure terms into measures. We will show that 
any LTS specification in this format leads to a distributive law of type S(Id ×�L) ⇒ (�T S )L , where S is the syntactic functor 
and T S the corresponding free monad. As a consequence, the induced behavioral equivalence is always a congruence.

This paper is the extended and revised version of the conference paper [7]. Some original contributions of this version 
are: the generalization of the format to the stochastic case, several proofs and new examples and discussions (see Section 7); 
moreover, in Section 2.3 we provide new tools to prove the existence of initial algebras and final coalgebras in categories 
different from Set, but with some well-behaved factorization system. We apply these tools in Section 3.3 to prove that the 
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