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We study connections between products of matrices and recursively enumerable sets. We 
show that for any positive integers m and n there exist three matrices M, N, B and a 
positive integer q such that if L is any recursively enumerable set of m × n matrices 
over nonnegative integers, then there is a matrix A such that the matrices in L are the 
nonnegative matrices in the set {AMm1 N Mm2 N · · · N Mmq B | m1, . . . , mq ≥ 0}. We use this 
result to deduce an undecidability result for products of matrices which can be viewed as 
a variant of Rice’s theorem stating that all nontrivial properties of recursively enumerable 
sets are undecidable.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The purpose of this paper is to show that all recursively enumerable sets of matrices over nonnegative integers can be 
obtained by using simple products of matrices. More precisely, for any positive integers m and n, we can compute three 
matrices M , N and B over nonnegative integers and a positive integer q such that if L is any recursively enumerable set 
consisting of m × n matrices with nonnegative integer entries, then we can compute a matrix A over integers such that the 
matrices in L are exactly the nonnegative matrices in the set{

AMm1 N Mm2 N · · · N Mmq B
∣∣ m1, . . . ,mq ≥ 0

}
.

This result implies that already in a very simple setup the product of matrices with integer entries gives rise to as com-
plex behavior as is theoretically possible. Indeed, because the product of matrices is a computable operation, it follows by 
Church’s thesis (see [13]) that any set obtained as above is recursively enumerable.

The main idea in our proof is to use the universal Diophantine representation of recursively enumerable sets of nonneg-
ative integers. The existence of such a representation was proved by Matiyasevich in connection of his undecidability proof 
for Hilbert’s tenth problem, see [11]. The second idea is to use products of matrices to express the values taken by the 
universal polynomial. This trick is often used, for example, in the study of decision problems concerning rational series in 
noncommuting variables (see [9,14]).

We will apply this representation result to prove a general undecidability result for products of matrices. This result 
can be viewed as a variant of Rice’s well-known theorem in the theory of recursive functions stating that every nontrivial 
property of recursively enumerable sets is undecidable.

We assume that the reader is familiar with the basics concerning recursively enumerable sets (see [13]). Intuitively, a set 
is recursively enumerable if there is an effective procedure to list the elements of the set. Formally, a set is recursively 
enumerable if there is a Turing machine accepting the set.
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There is a large number of papers dealing with various decidability questions concerning matrices. The inspiration for 
this paper comes largely from [1], where the authors use Hilbert’s tenth problem to prove that it is undecidable whether or 
not certain sets of products of given square matrices contain the zero matrix. Other important papers concerning this topic 
include, but are certainly not limited to, the papers [12,10,7,8,3,6,2] and [4].

2. The results

As usual, N and Z are the sets of nonnegative integers and all integers. Suppose m and n are positive integers and R is 
a semiring. Then the set of m × n matrices having entries in R is denoted by Rm×n and the set of upper-triangular m × m
matrices is denoted by Tri(m, R). If 1 ≤ i ≤ m and 1 ≤ j ≤ n, then E(i, j) is the m × n matrix whose only nonzero entry is 1 
at position (i, j). (In what follows the size of E(i, j) is not specified if it is clear from the context.)

Now, fix an enumeration

L0,L1,L2, . . .

of the recursively enumerable subsets of Nm×n . In the next section we will prove the following result.

Theorem 1. Let m, n ≥ 1. We can compute positive integers p, q and matrices A ∈ Z
m×p , M, N ∈ Tri(p, N) and B ∈N

p×n such that

Ls = {
AMs N Mm1 N Mm2 N · · · N Mmq B

∣∣ m1, . . . ,mq ≥ 0
} ∩N

m×n

for all s ≥ 0.

Let A, M, N and B be as in Theorem 1. By Theorem 1, if L is any recursively enumerable subset of Nm×n then there is a 
matrix A1 such that the matrices belonging to L are the nonnegative matrices in the set{

A1Mm1 N Mm2 N · · · N Mmq B
∣∣ m1, . . . ,mq ≥ 0

}
.

Here A1 = AMs N where s is chosen so that L = Ls . Observe that if we change the set L we only have to change the 
matrix A1. The same matrices M, N, B work for all L.

Example 1. Let m, n ≥ 1 and let M, N, B and q be as in Theorem 1. Then we can compute a matrix A2 such that if we take 
the products

A2Mm1 N Mm2 N · · · N Mmq B

for m1, . . . , mq ≥ 0 which are nonnegative then we get exactly those m ×n matrices for which all entries are prime numbers.
Similarly, we can compute a matrix A3 such that we get all m × n matrices which have the property that the total 

number of distinct prime factors of the entries equals 2014.

Example 2. For this example we first observe that any book in any library can be regarded as a finite set of matrices in 
a natural and uniform way. To do this, assume that the book is printed so that each page contains at most 70 lines and 
each line contains at most 100 symbols. Here we regard the empty space, punctuation marks and so on as symbols. Next 
we replace each symbol by a positive integer chosen to represent the symbol. In this way each page can be viewed as a 
70 × 100 matrix with positive integer entries. To get the finite set of matrices representing a given book we add to the 
matrices representing the pages of the book a new row whose first entry gives the page number while the remaining 99
entries equal zero.

Now Theorem 1 implies that we can compute positive integers p and q and matrices A ∈ Z
71×p , M, N ∈ Tri(p, N) and 

B ∈N
p×100 such that

Ls = {
AMs N Mm1 N Mm2 N · · · N Mmq B

∣∣ m1, . . . ,mq ≥ 0
} ∩N

71×100

where Ls is the sth recursively enumerable subset of N71×100 in a fixed enumeration of the recursively enumerable subsets 
of N71×100. It follows that by taking a suitable matrix A1 the nonnegative matrices in{

A1Mm1 N Mm2 N · · · N Mmq B
∣∣ m1, . . . ,mq ≥ 0

}
give us Hamlet. By using a different A1 we get the Bible and so on. The same matrices M, N and B work for all existing 
and forthcoming books.

The use of nonsquare matrices in Theorem 1 cannot be avoided. Indeed, if A, M, N, B ∈ Z
m×m and q ≥ 1, then the sets{

AMs N Mm1 N Mm2 N · · · N Mmq B
∣∣ m1, . . . ,mq ≥ 0

} ∩N
m×m
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