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In the final paper of the Graph Minors series Robertson and Seymour proved that
graphs are well-quasi-ordered under the immersion ordering. A direct implication of this
theorem is that each class of graphs that is closed under taking immersions can be fully
characterized by forbidding a finite set of graphs (immersion obstruction set). However,
as the proof of the well-quasi-ordering theorem is non-constructive, there is no generic
procedure for computing such a set. Moreover, it remains an open issue to identify
for which immersion-closed graph classes the computation of those sets can become
effective. By adapting the tools that were introduced by Adler, Grohe and Kreutzer, for the
effective computation of minor obstruction sets, we expand the horizon of computability
to immersion obstruction sets. In particular, our results propagate the computability of
immersion obstruction sets of immersion-closed graph classes to immersion obstruction
sets of finite unions of immersion-closed graph classes.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The development of the graph minor theory constitutes a vital part of modern Combinatorics. A lot of theorems that were
proved and techniques that were introduced in its context, appear to be of crucial importance in Algorithmics and the theory
of Parameterized Complexity as well as in Structural Graph Theory. Such examples are the Excluded Grid Theorem [30],
the Structural Theorems in [28,31] and the Irrelevant Vertex Technique in [27]. (For examples of algorithmic applications,
see [12,22].)

We say that a graph H is an immersion (minor) of a graph G , if we can obtain H from a subgraph of G by lifting (con-
tracting) edges followed by a possibly empty sequence of isolated vertex deletions. (For detailed definitions, see Section 2.)
While the minor ordering has been extensively studied throughout the last decades [1,9,27,28,30–33], the immersion order-
ing has only recently gained more attention [13,22,34]. One of the fundamental results that appeared in the last paper of
the Graph Minors series was the proof of Nash–Williams’ Conjecture, that is, the class of all graphs is well-quasi-ordered
by the immersion ordering [33]. A direct corollary of these results is that a graph class C , which is closed under taking
immersions, can be characterized by a finite family obs�im (C) of minimal, according to the immersion ordering, graphs that
are not contained in C (called obstructions from now on). Furthermore, in [22], it was proven that there is an O (|V (G)|3)
algorithm that decides whether a graph H is an immersion of a graph G (where the hidden constants depend only on H).
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Thus, an immediate algorithmic implication of the finiteness of obs�im (C) and the algorithm in [22], is that it can be de-
cided in cubic time whether a graph belongs to C or not (by testing if the graph G contains any of the graphs in obs�im (C)

as an immersion). In other words, these two results imply that membership in an immersion-closed graph class can be
decided in cubic time. Such graph classes are, for example, the class of graphs Et that admit a proper edge-coloring of at
most t colors such that for every two edges of the same color every path between them contains an edge of greater color,
t ∈N, [5] and the class of graphs Wk whose carving-width is at most k, k ∈ N, [4].

We would like to mention here that the same meta-algorithmic conclusion also holds for the minor ordering from the
proofs in [28] and [29]. Moreover, this result, that is, the existence of a cubic time algorithm deciding the membership of a
graph in a graph class that is closed under minors, broadened the perspectives towards the understanding of the NP-hard
problems.

It was actually at that point that it became clear what seemed to be as “different levels of hardness” between these
problems [6]. Notice for example, for the well-known k-Vertex Cover problem, that the class of graphs admitting a vertex
cover of size at most k is closed under taking minors. Therefore, for every fixed k there is a cubic time algorithm deciding
whether a graph has a vertex cover of size k. However, no similar result can be expected for the k-Coloring problem, as it
is known to be NP-hard for every fixed k � 3. The observation of this gap in the time complexity of the NP-hard problems
facilitated the development of the Parameterized Complexity Theory [14,19,26] by M. Fellows and R. Downey, which has
proven to be a very powerful theory and has majorly advanced during the past decades (for example, see [2,7,8,11,12]).

Nevertheless, the aforementioned meta-algorithmic result for an immersion-closed graph class C assumes that the family
obs�im (C) is known. Of course, the finiteness of obs�im (C) directly implies that this family of graphs is computable. How-
ever, such an algorithm for the computation of obs�im (C) would also require a description of the family. Therefore, while
the existence of an algorithm computing the immersion obstruction set of an immersion-closed graph class C is affirmed,
the construction of such an algorithm is, in general, elusive. Moreover, as the proofs in [29] and [33] are non-constructive
(see [20]), no generic algorithm is provided that allows us to identify these obstruction sets for every immersion-closed
graph class. Furthermore, even for fixed graph classes, this task can be extremely challenging as such a set could contain
many graphs [15] and no general upper bound on its cardinality is known other than its finiteness. The issue of the effec-
tive computability of obstruction sets for minors and immersions was raised by M. Fellows and M. Langston [17,18] and
the challenges against computing obstruction sets soon became clear. In particular, in [18] M. Fellows and M. Langston
showed that the problem of determining obstruction sets from machine descriptions of minor-closed graph classes is re-
cursively unsolvable (which directly holds for the immersion ordering as well). Moreover, in [10] B. Courcelle, R. Downey
and M. Fellows proved that the obstruction set of a minor-closed graph class cannot be computed from a description of the
minor-closed graph class in Monadic Second Order Logic (MSO). Thus, a natural open problem is to identify the information
that is needed for an immersion-closed graph class C in order to make it possible to effectively compute the obstruction
set obs�im (C).

Several methods have been proposed towards tackling the non-constructiveness of these sets (see, for example, [9,17])
and the problem of algorithmically identifying minor obstruction sets has been extensively studied [1,9,10,17,18,24]. In [9],
it was proven that the obstruction set of a minor-closed graph class F which is the union of two minor-closed graph classes
F1 and F2 whose obstruction sets are given can be computed under the assumption that there is at least one tree that
does not belong to F1 ∩F2 and in [1] it was shown that the aforementioned assumption is not necessary.

In this paper, we initiate the study for computing immersion obstruction sets. In particular, we deal with the problem of
computing obs�im (C) for families of graph classes C that are constructed by finite unions of immersion-closed graph classes.
Observe that the union and the intersection of two immersion-closed graph classes are also immersion-closed, hence their
obstruction sets are of finite size. It is also easy to see that, given the obstruction sets of two immersion-closed graph
classes, the obstruction set of their intersection can be computed in a trivial way. However, notice that, in general, while
the combination of a machine description of an immersion-closed graph class F , that is, an algorithm deciding membership
of a graph in an immersion-closed graph class F , with an upper bound on the size of the forbidden graphs makes the
computation of obs�im (F) effective, neither the machine description of the class nor the upper bound alone are sufficient
information. Moreover, as mentioned before, no generic procedure is known for computing such an upper bound. Thus, the
problem of computing the obstruction set of the union of two immersion-closed graph classes is not trivial.

We prove that there is an algorithm that, given the obstruction sets of two immersion-closed graph classes, outputs the
obstruction set of their union. Our approach is based on the derivation of a uniform upper bound on the tree-width of
the subgraph-minimal graphs that do not belong to an immersion-closed graph class C . We then build on the machinery
introduced by I. Adler, M. Grohe and S. Kreutzer in [1] for computing minor obstruction sets. In particular, we will ask for
an MSO-description of an immersion-closed graph class C (instead of a machine description) and an upper bound on the
tree-width of the subgraph-minimal graphs that contain an obstruction of C (instead of an upper bound on the size of the
obstructions of C).

For this, we adapt the results on [1] as to permit the computation of the obstruction set of any immersion-closed graph
class C , under the conditions that an explicit upper bound on the tree-width of the subgraph-minimal graphs that do not
belong to C (and thus contain at least one of its obstructions) can also be computed and the graph class C can be defined
in MSO. We present this algorithm in Lemma 4, and with that we conclude the computability part of the paper. Our next
step is a combinatorial result proving a uniform upper bound on the tree-width of the subgraph-minimal graphs that do
not belong to the union of two immersion-closed graph classes, whose obstruction sets are known. We then show that the
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