
Journal of Computational Science 14 (2016) 5–14

Contents lists available at ScienceDirect

Journal of Computational Science

journa l h om epage: www.elsev ier .com/ locate / jocs

Unite and conquer approach for high scale numerical computing

Nahid Emada,b,∗, Serge Petitona,c

a Maison de la Simulation, Digitéo Labs – Bat. 565, 91191 Gif-sur-Yvette Cedex, France
b LI-PaRAD Laboratory, 45 avenue des Etats-Unis, 78035 Versailles Cedex, France
c CRIStAL, University Lille 1, Sciences and Technologies, France

a r t i c l e i n f o

Article history:
Received 15 August 2015
Received in revised form
27 December 2015
Accepted 24 January 2016
Available online 6 February 2016

Keywords:
Restarted hybrid methods
Krylov methods
Linear algebra
Parallel and distributed programming
model
Extreme scale computing

a b s t r a c t

The ability to exploit emerging exascale computational systems will require a careful review and redesign
of core numerical algorithms and their implementations to fully exploit multiple levels of concurrency,
hierarchical memory structures and heterogeneous processing units that will become available in these
computational platforms. This paper presents the “unite and conquer” approach to solve linear systems of
equations and eigenvalue problems for extreme scale computing. Indeed, there are two ways to optimize
the execution of a restarted method on a large-scale distributed system. The first one is to optimize
the number of floating point operations per restart cycle through maximizing the concurrency inside a
restart cycle while minimizing latencies. The second way is to accelerate/improve the rate of convergence
for a given computational scheme. The unite and conquer restarted approach focuses on decreasing the
number of restart cycles by coupling either synchronously or asynchronously several restarted methods
called also co-methods. In the end of a restart cycle, each co-method locally gathers available results
of all collaborating co-methods and selects the best one in order to create its restarting information.
Consequently this permits the global reduction of the number of cycles to convergence. The unite and
conquer restarted methods are heterogeneous, fault tolerant, support asynchronous communications
and present a big potential of load balancing. Due to these properties, they are well adapted to large-
scale multi-level parallel architectures. We show the relevant programming paradigms that allow multi-
level parallel expression of these methods and how the software engineering technology can contribute
significantly in achieving high scalability. We present some experiments validating the approach for unite
and conquer restarted Krylov methods on several parallel and distributed platforms.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the coming years, the number of cores along with hetero-
geneity of components of supercomputers (such as GPUs and
other accelerators) will grow causing the transition to multi- and
many-cores inside computing nodes that communicate explicitly
through fast interconnection networks. These very hierarchical
supercomputers will be at the intersection of distributed and par-
allel computing and pose big challenges that have to be addressed
(see Fig. 1) [1]. The communication, energy consumption, fault tol-
erance are becoming increasingly important inside such systems.
To harness the totality of the computational power in such a com-
plex ecosystem, it is central to explore novel parallel programming
and execution models, which put the emphasis on multi-grain

∗ Corresponding author at: Maison de la Simulation, Digitéo Labs – Bat. 565, 91191
Gif-sur-Yvette Cedex, France.

E-mail address: Nahid.Emad@uvsq.fr (N. Emad).

multi-threading, multi-level memory and parallel process-
ing, reducing synchronizations and promoting asynchronicity,
multi-level scheduling strategies, etc. The complexity of these
architectures and recent and emerging prototypes must be taken
into account to design future languages and frameworks and
anticipate their characteristics, by proposing new programming
paradigms, new general purpose as well as application-oriented
languages and environments (DSL). Indeed, the SPMD/MPI-Like
models will not be sufficient for architectures with millions
of cores and billions of threads. Taking into consideration the
characteristics of these supercomputers may help to define sets of
constraints to be satisfied in order to improve the performance of
large applications on these systems. Based on these constraints, we
can then define smart co-design methods/algorithms associated
with these applications. Systems and languages are often defined
on the basis of existing methods, algorithms and libraries but
they were developed only for SPMD and MPI-like programming
models and the time when Moor’s law was verified. But for new
computational systems, numerical methods have to be adapted

http://dx.doi.org/10.1016/j.jocs.2016.01.007
1877-7503/© 2016 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.jocs.2016.01.007
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jocs.2016.01.007&domain=pdf
mailto:Nahid.Emad@uvsq.fr
dx.doi.org/10.1016/j.jocs.2016.01.007

6 N. Emad, S. Petiton / Journal of Computational Science 14 (2016) 5–14

Fig. 1. Key characteristics and challenges of forthcoming exascale architectures.

by taking into account the architecture, arithmetic, I/O laten-
cies, etc. In this context, auto-tuning has to become a general
approach. Some numerical method has to be coupled to solve large
scientific applications asynchronously with each collaborating
method (co-method) auto-adapted. Fine criteria at the application
level and/or mathematical methods level should be taken into
account in auto-tuning resulting in “smart-tuned” algorithms.
The correlation between these elements gives rise to intelligent
numerical methods for which “end-users” will be able to provide
their expertise. Our goal is to discuss the trend of parallel program-
ming and execution paradigm for high scale parallel/distributed
computing and to show the adaptability of it to the case of modern
smart-tuned numerical methods. For these reasons, we propose
“unite and conquer” approach and, focus then on the case of unite
and conquer restarted Krylov subspace methods.

In the following section, we present key elements for program-
ming paradigms of targeted computing systems. A programming
model is proposed together with corresponding YML framework
offering the required properties necessary for its implementation.
Section 3 describes the unite and conquer approach and its appli-
cation to iterative methods, leading to design and deployment
of the hybrid methods. Some experimental results pointing out
the efficiency of the approach are presented. Section 4 focuses
on the multiple restarted Krylov subspace methods, a particular
case of hybrid ones, and their performance on various parallel and
distributed platforms. Concluding remarks and perspective are pre-
sented in Section 5 including the highlighting of some unexpected
aspects of these hybrid methods in the case of multiple restarted
Arnoldi method with nested subspaces (MRAMns).

2. What programming paradigms?

In order to provide targeted programming models, the follow-
ing key elements have to be considered. Data movements have to
be minimized, but it must be remembered that all communications
do not have the same cost. The latencies between distant cores are
expected to be very time-consuming. Consequently, communica-
tions between distant cores have to be avoided thus reducing the
energy consumption of these systems. Programming and execution
models have to consider multi-level parallelism, from very coarse-
grained through medium grained down to fine-grained parallelism
with scheduling strategies, load balancing policies and fault tolerance
in each level.

2.1. Our proposition

We propose a programming paradigm suitable for these large
parallel and distributed architectures which is based on the fol-
lowing two factors.

(1) Component approach. The targeted high performance com-
puting systems have a large number of nodes and cores with a
part of them being geographically apart. Additionally, the hetero-
geneity of their basic elements (processors, memories, run-time
systems) makes them very complex architectures. Most current
applications and numerical libraries neither efficiently utilize the
number of cores per node nor the heterogeneity of the processing
units in the systems. This clearly could result in poor resource uti-
lization that keeps computational scientists looking for short-term
solutions that in the long run becomes very costly. Furthermore,
the basic constituents of these parallel applications and libraries
are strongly intertwined. That means, the computations, the data
and the communication are often defined in the same program
entity, preventing the extensibility and interoperability and as a
consequence the reusability of the applications.

In order to effectively exploit these architectures and design sus-
tainable programs, it is essential to be able to define an application
as a set of off-the shelf and communicating components. Thereby,
design and implementation of programming models for such com-
plex systems has to be governed by component-oriented approach.
Our oncoming is based on an innovation oriented-component
approach based on the abstraction of the three main elements of a
parallel numerical program which are computation, data manage-
ment and communication [2]. In addition to other good software
engineering consequences such as interoperability, extensibility,
and durability, this will allow to achieve the code reusability in
terms of software as well as hardware. The first provides the
possibility of making use of the same code on several types of archi-
tectures such as vector ones, accelerators, etc. The latter permits,
inter alia, to make use of the same code in several different contexts
such as numerical methods, visualization, data managements, etc.
As a consequence, in addition to design of reusable applications
and/or libraries, this programming model allows making (re)use
of existing efficient libraries in the context of extreme scale com-
puting. For that, these libraries have to be equipped with software
mechanisms that will enable us to deploy different parallel pro-
gramming constructs with minimal changes to their current user
interfaces.

(2) Graph of components. Once the component approach is
adopted, we propose to describe an application as graph of its
coarse grain components. Such components can themselves be a
graph of tasks and can be described by a data-flow, SPMD PGAS1-
like or by a data-parallel programming model. Thus, on each
processor or node hosting such a component, we can program
accelerators and on the level of cores, multithreaded optimiza-
tion and runtime libraries can be used. This programming model

1 Partitioned Global Address Space.

Download English Version:

https://daneshyari.com/en/article/430036

Download Persian Version:

https://daneshyari.com/article/430036

Daneshyari.com

https://daneshyari.com/en/article/430036
https://daneshyari.com/article/430036
https://daneshyari.com

