
Journal of Computational Science 14 (2016) 38–50

Contents lists available at ScienceDirect

Journal of Computational Science

j ourna l h om epage: www.elsev ier .com/ locate / jocs

Computation–communication overlap and parameter auto-tuning for
scalable parallel 3-D FFT

Sukhyun Song ∗, Jeffrey K. Hollingsworth
Department of Computer Science, University of Maryland, College Park, United States

a r t i c l e i n f o

Article history:
Received 16 July 2015
Received in revised form 8 October 2015
Accepted 9 December 2015
Available online 19 December 2015

Keywords:
3-D FFT
MPI
Non-blocking collective
Computation–communication overlap
Auto-tuning

a b s t r a c t

Parallel 3-D FFT is widely used in scientific applications, therefore it is important to achieve high per-
formance on large-scale systems with many thousands of computing cores. This paper describes a new
method for scalable high-performance parallel 3-D FFT. We use a 2-D decomposition of 3-D arrays to
increase scaling to a large number of cores. In order to achieve high performance, we use non-blocking
MPI all-to-all operations and exploit computation-communication overlap. We also auto-tune our 3-D
FFT code efficiently in a large parameter space and cope with the complex trade-off in optimizing our
code in various system environments. According to experimental results from two systems, our method
computes parallel 3-D FFT significantly faster than three existing libraries, and scales well to at least
32,768 compute cores.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

It is important to achieve high performance of the Fast Fourier
Transform (FFT) as FFT is widely used in many fields of science and
engineering. For example, researchers have recently used three-
dimensional FFT (3-D FFT) to run astrophysical N-body simulations
[1] and turbulent flow simulations [2] on high-performance com-
puting systems. Computing 3-D FFT requires a large number of
floating point and memory access operations. So we need a parallel
algorithm that can be run on a large-scale system. However, parallel
3-D FFT requires expensive all-to-all communication. Each parallel
computing process exchanges a 3-D array with all the other pro-
cesses. We believe that it would be beneficial to overlap expensive
computation and communication in achieving high performance of
parallel 3-D FFT.

In this paper, we present a new method for parallel 3-D
FFT that can increase scaling to a large number of comput-
ing cores in a distributed-memory parallel system, and exploits
computation–communication overlap. 1 We design a scalable
method by following the 2-D domain decomposition technique
[4–8] that decomposes a 3-D array along two dimensions.

∗ Corresponding author.
E-mail addresses: shsong@cs.umd.edu (S. Song), hollings@cs.umd.edu

(J.K. Hollingsworth).
1 Note that this paper is an extended version of our previous paper [3], so the two

papers share several figures and texts.

Accordingly, we can use more computing cores than the approaches
presented in [9–11] that use the 1-D domain decomposition and
only decompose an array along one dimension. We exploit the over-
lap of computation and communication by using the non-blocking
MPI Ialltoall operation that is described in the MPI-3.0 standard
[12]. As the MPI library is widely used in the parallel comput-
ing community, it is important to design a parallel 3-D FFT code
based on MPI and achieve portability. We use collective commu-
nication instead of point-to-point communication due to its better
performance and simplicity. The MPI collectives are optimized for
complex communication patterns among parallel processes, and
we can write a simple code based on collective operations.

Our work is the first to effectively apply non-blocking MPI
collectives to the 2-D decomposition technique for parallel 3-D
FFT. Popular FFT libraries [4,5,9] do not exploit non-blocking com-
munication. Although the work by Nishtala et al. [8] overlaps
computation and communication, it is written in UPC and based
on point-to-point communication. Hoefler et al.’s work [10] and
our previous work [11] use MPI Ialltoall, but their scalability is
limited as they use a 1-D domain decomposition.

Our strategy for computation–communication overlap is to have
each process divide an array into multiple small blocks, and repeat
computation and non-blocking communication on the divided
blocks. In this way, we have opportunities to overlap computation
on one block with communication on other blocks, and eventu-
ally increase the overall performance. We also increase scaling by
applying our overlap strategy to each of the two communication
phases in the 2-D decomposition technique for parallel 3-D FFT.

http://dx.doi.org/10.1016/j.jocs.2015.12.001
1877-7503/© 2015 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.jocs.2015.12.001
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jocs.2015.12.001&domain=pdf
mailto:shsong@cs.umd.edu
mailto:hollings@cs.umd.edu
dx.doi.org/10.1016/j.jocs.2015.12.001

S. Song, J.K. Hollingsworth / Journal of Computational Science 14 (2016) 38–50 39

To optimize the overall performance of our method, we iden-
tify and resolve the following requirements. First, all possible
computation steps should be used for the overlap. Parallel 3-D
FFT involves three steps of pre-computation, communication,
and post-computation. Simpler approaches given in [8,10,13]
can only overlap pre-computation on one data block with com-
munication on other blocks, then perform post-computation on
the entire blocks. Instead, we have both pre-computation and
post-computation overlapped with communication. Second, com-
putation should be balanced between the two communication phases.
The 2-D decomposition method involves two phases of all-to-
all communication, and there exist three local computation steps
before and after each phase. When the communication time
is different between two phases, we divide the computation
in the middle into two. We then assign a longer computation to the
phase with the longer communication. In this way, we increase the
opportunity to overlap the computation in the middle with com-
munication. Third, code should be portable. One way to ensure fully
asynchronous communication for non-blocking MPI collectives is
to offload communication processing to special hardware. Instead,
we choose another option for asynchronous communication, which
calls MPI Test periodically, due to its greater portability. Last, we
should automatically handle the complex trade-off regarding our opti-
mization techniques. We parameterize our parallel 3-D FFT code
and auto-tune the parameters. For example, a data block size for
communication and a MPI Test call frequency are set by tun-
able parameters. Since the parameter space is very large (more
than trillions of possible configurations), hand-tuning is not feasi-
ble. We utilize the publicly available Active Harmony auto-tuning
library [14] and find a good parameter configuration efficiently.
We also introduce several techniques to tune our FFT code fast and
effectively.

We conducted experiments on two systems at NERSC using
up to 32,768 compute cores. Our code performs parallel 3-D FFT
faster than three other approaches. Specifically, we achieve a
speedup by up to 1.83× over the FFTW library [9], 2.57× over the
2DECOMP&FFT library [5], and 1.95× over the UPC-based code [8].

The rest of the paper is organized as follows. We first describe
background information in Section 2. Sections 3 and 4 present how
we design and auto-tune our parallel 3-D FFT code. We relate our
evaluation and results in Section 5. Section 6 provides the related
work. Finally, we conclude and discuss future work in Section 7.

2. Background

This section first reviews FFT computation and describes
several basic assumptions underlying our design. We then
introduce a general method for parallel 3-D FFT without any
computation–communication overlap.

2.1. Fast Fourier Transform

With an input array X of N complex numbers, a one-dimensional
FFT produces an output array Y of N complex numbers. When
ωN = e−(2�/N)i, Y[k] is defined for k = 0, 1, . . . , N − 1 as Y[k] =∑N−1

j=0 X[j]ωN
jk. The d-dimensional FFT can be computed simply as

the composition of a sequence of d sets of 1-D FFTs along each
dimension. For example, 3-D FFT for N3 complex numbers can be
computed by three sets of N2 1-D FFTs along each dimension.

We make the following assumptions in this paper. First, we focus
on the forward transform that transforms X into Y. Our approach
can be easily applied to transform Y backward into X. Second, we
only describe the complex-to-complex transform that takes an input
array of complex numbers and produces an output array of com-
plex numbers. We have also implemented the real-to-complex

transform by applying our computation–communication overlap
methods, but omit the details of this implementation due to space
limitations. Last, we focus on the in-place transform and want the
output to overwrite the input array. Our approach can be applied
directly for the out-of-place transform where the output is written
to a separate array.

2.2. 2-D domain decomposition for parallel 3-D FFT

Our design for a parallel 3-D FFT basically follows the 2-D domain
decomposition method. The overall procedure of the 2-D domain
decomposition method consists of several steps as shown in Fig. 1.
We parallelize 3-D FFT with p processes, and Fig. 1 shows an exam-
ple of p = 4. An input 3-D array is divided equally into p1 sub-arrays
along the x dimension and p2 sub-arrays along the y dimension.
p1 = 2 and p2 = 2 in Fig. 1, and process numbers are marked on each
sub-array. Then each process executes the following steps on each
sub-array:

1. FFTz: Compute 1-D FFTs along the z dimension. (Assume that
elements on the z dimension are adjacent in memory.)

2. Pack1: Pack the 3-D sub-array data into a buffer in preparation
for all-to-all communication.

3. A2A1: Perform blocking all-to-all communication for each group
of p2 processes.

4. Unpack1: Unpack the received data into the 3-D sub-array with
the new memory layout such that elements on the y dimension
are adjacent in memory.

5. FFTy: Compute 1-D FFTs along the y dimension.
6. Pack2: Pack the 3-D sub-array data into a buffer in preparation

for all-to-all communication.
7. A2A2: Perform blocking all-to-all communication for each group

of p1 processes.
8. Unpack2: Unpack the received data into the 3-D sub-array with

the new memory layout such that elements on the x dimension
are adjacent in memory.

9. FFTx: Compute 1-D FFTs along the x dimension.

We divide the 2-D decomposition procedure into two commu-
nication phases: Phase1 includes steps from FFTz through FFTy, and
Phase2 includes the rest of the procedure.

An alternative way to compute a parallel 3-D FFT is to use the
1-D domain decomposition that only decomposes an array along
one dimension rather than two. The 2-D domain decomposition
method is more scalable than 1-D decomposition since we can use
more computing processes. The 2-D decomposition requires two
phases of all-to-all communication, which involves more complex
communication pattern than the 1-D decomposition. However, the
2-D decomposition performs communication on a small sub-group
of processes while the 1-D decomposition uses a whole set of
processes for all-to-all communication. Thus, when both methods
can be used, the system environment determines which method
is faster. The 1-D decomposition can be considered as two spe-
cial cases of 2-D decomposition. One case is p1 = 1, where a 3-D
array is only decomposed along the y dimension. The other case is
p1 = p, where a 3-D array is only decomposed along the x dimension.
Note that our approach supports 1-D decomposition through auto-
tuning. To achieve high performance parallel 3-D FFT, we tune the
value of p1 and automatically choose between a 1-D decomposition
and a 2-D decomposition.

3. Parallel 3-D FFT

This section describes the design of our new parallel 3-D
FFT algorithm. We will show how we can improve the 2-D

Download English Version:

https://daneshyari.com/en/article/430039

Download Persian Version:

https://daneshyari.com/article/430039

Daneshyari.com

https://daneshyari.com/en/article/430039
https://daneshyari.com/article/430039
https://daneshyari.com

