
Journal of Computational Science 14 (2016) 51–60

Contents lists available at ScienceDirect

Journal of Computational Science

journa l h om epage: www.elsev ier .com/ locate / jocs

Exploiting data representation for fault tolerance

J. Elliotta,b,∗, M. Hoemmenb, F. Muellera

a North Carolina State University, Department of Computer Science, Raleigh, NC, United States
b Center for Computing Research, Sandia National Laboratories, Albuquerque, NM, United States

a r t i c l e i n f o

Article history:
Received 15 July 2015
Received in revised form 9 November 2015
Accepted 10 December 2015
Available online 6 January 2016

Keywords:
Algorithm-based fault tolerance
Resilient algorithms
Numerical methods

a b s t r a c t

Incorrect computer hardware behavior may corrupt intermediate computations in numerical algorithms,
possibly resulting in incorrect answers. Prior work models misbehaving hardware by randomly flipping
bits in memory. We start by accepting this premise, and present an analytic model for the error introduced
by a bit flip in an IEEE 754 floating-point number. We then relate this finding to the linear algebra
concepts of normalization and matrix equilibration. In particular, we present a case study illustrating
that normalizing both vector inputs of a dot product minimizes the probability of a single bit flip causing
a large error in the dot product’s result. Furthermore, the absolute error is either less than one or very
large, which allows detection of large errors. Then, we apply this to the GMRES iterative solver. We count
all possible errors that can be introduced through faults in arithmetic in the computationally intensive
orthogonalization phase of GMRES, and show that when the matrix is equilibrated, the absolute error is
bounded above by one.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the field of high-end computing (HEC) the notion of reliabil-
ity has tended to focus on keeping thousands of physical nodes
operating cooperatively for extended periods of time. As chip
manufacturing and power requirements continue to advance, soft
errors are becoming more apparent [1]. This implies that reliability
research must address the case that the machine does not crash, but
that outputs during computation may be silently incorrect. There
have been many studies into hardening numerical kernels against
soft errors, that is, the researchers attempt to preserve the illusion
of a reliable machine by detecting and correcting all soft errors.
We take a more analytical approach. Instead of focusing on detec-
tion/correction, we seek to study how the data operated on impacts
the errors that we can observe given soft errors in data — called
silent data corruption (SDC).

The driving motivation behind our work is the uncertainty sur-
rounding the reliability of an exascale-class machine [2–4]. We
attempt to avoid speculation over what hardware may be used in
future (or present) HEC deployments, and instead analyze how a
single soft error in an IEEE-754 floating-point number behaves. It

∗ Corresponding author at: North Carolina State University, Department of Com-
puter Science, Raleigh, NC, United States.

E-mail addresses: jjellio3@ncsu.edu (J. Elliott), mhoemme@sandia.gov
(M. Hoemmen), mueller@cs.ncsu.edu (F. Mueller).

has already been shown that existing and decommissioned HEC
deployments have suffered from SDC [1,5]. For the prior reasons,
we seek to study the link between the data operated on and soft
errors. We intentionally perform our research subject to the IEEE
754 specification, which we believe will be used regardless of the
architecture. We also restrict our analysis to single bit flips. This
gives us a base line from which to draw higher-level conclusions
related to multiple bit flips, and lets us isolate the impact of a bit
flip.

IEEE 754 both defines the binary representation of data, and
bounds the rounding error committed by arithmetic operations.
This work focuses on data representation. The effects of round-
ing error on numerical algorithms, including those studied in this
paper, have been extensively studied (see, e.g., [6]). However, these
results generally only apply to small errors, such as those resulting
from rounding. The error from bit flips can be huge and thus require
different methods of analysis, like those presented in this paper.

2. Related work

Researchers have approached the problem of SDC in numeri-
cal algorithms in various ways. Many take the approach of treating
an algorithm as a black box and observing the behavior of these
codes when run with soft errors injected. Recently, Howle et al. [7]
analyzed the behavior of various Krylov methods and observed the
variance in iteration count based on the data structure that expe-
riences the bit flip. Shantharam et al. [8] analyzed how bit flips in

http://dx.doi.org/10.1016/j.jocs.2015.12.002
1877-7503/© 2016 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.jocs.2015.12.002
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jocs.2015.12.002&domain=pdf
mailto:jjellio3@ncsu.edu
mailto:mhoemme@sandia.gov
mailto:mueller@cs.ncsu.edu
dx.doi.org/10.1016/j.jocs.2015.12.002

52 J. Elliott et al. / Journal of Computational Science 14 (2016) 51–60

a sparse matrix-vector multiply (SpMV) impact the L2 norm and
observed the error as CG is run. Bronevetsky et al. and Sloan et al.
[9,10] analyzed several iterative methods documenting the impact
of randomly injected bit flips into specific data structures in the
algorithms and evaluated several detection/correction schemes in
terms of overhead and accuracy. Exemplifying the concept of black-
box analysis, BIFIT [11] characterizes applications based on their
vulnerability to bit flips. A similar tool, S-FETI [12] injects soft errors
through an emulation layer, allowing arbitrary codes to be run in
a faulty virtual environment. Rather than focusing on how to pre-
serve the illusion of a reliable machine or devising a scheme to
inject soft errors, we investigate an avenue mostly ignored, which
is how the data in the algorithm can be used to mitigate the impact
of a bit flip.

Hoemmen and Heroux proposed a radically different approach.
Rather than attempt to detect and correct soft errors, they use
a “selective reliability” programming model to make the algo-
rithm converge through soft errors [13]. Sao and Vuduc showed
that reliably restarting iterative solvers enables convergence in the
presence of soft errors [14]. In the same vein, Elliott et al. showed
that bounding the error introduced in the orthogonalization phase
of GMRES lets FT-GMRES converge with minimal impact on time
to solution [15]. Boley et al. apply backward error analysis to linear
systems in order to distinguish small errors due to rounding from
inacceptably large errors due to transient hardware faults [16]. In
general, our work complements this line of research. While Elliott,
Hoemmen, and Sao have investigated algorithms that can converge
through error, we show that in certain numerical kernels the data
itself can have a “bounding” effect. For example, coupled with the
work of Elliott et al. [15], we improve the likelihood that errors fall
within the derived bound.

3. Motivation

Bit flips are the motivation for resilient algorithms. Algorithms
run on digital machines, so any corruption is due to a fault at the
hardware level or radiation from space. There are many layers and
abstractions between what a user sees and what hardware actu-
ally does. Caches for data and instructions are an example of these
layers.

Many works in the field of algorithmic fault tolerance have tail-
ored methods for a bit flip fault model, e.g., [10,17–21], but their
fault model rarely considers faulty hardware. Instead, researchers
simulate hardware faults by injecting bit flips into values before or
after an operation. A standard approach, e.g., [9,14,22], is to flip one
or more bits in the input to an operation and observe the effect on
algorithms.

We use this same fault injection methodology, but relate our
findings to the analytic model of IEEE-754 floating point represen-
tation. Our findings demonstrate the close relationship between
data and a fault model. Moreover, our findings illustrate the short-
comings of evaluating algorithms using this type of fault injection.
As we will demonstrate, the expected value obtained by sampling
is highly dependent on the characteristics of the data operated on.
While bit flips are the root cause of errors, it is not clear that we
need to assess algorithmic fault tolerance approaches using a bit
flip fault methodology.

4. Overview

To explore the relation between data representation and soft
errors, we first construct an analytic model of a soft error in an IEEE-
754 floating-point scalar, and then extend this to a dot product. We
uncover through analysis that the binary pattern of the exponent
can be exploited for fault tolerance. We show this graphically via a

case study using Monte Carlo sampling of random vectors, and then
extend the idea of data scaling to matrices by using sparse matrix
equilibration. To demonstrate the feasibly and utility of our work,
we analyze the GMRES algorithm and instrument the computa-
tionally intensive orthogonalization phase. We count the possible
absolute errors that can be introduced via a bit flip in a dot product,
and show that scaling data lowers the likelihood of observing large,
undetectable errors.

This paper is organized as follows:

1. In Section 5, we construct an analytic model of the absolute error
for single bit upsets in IEEE-754 floating-point numbers.

2. In Section 6, we extend our model of faults in IEEE-754 scalars
to vectors of arbitrary values, and present examples of how data
scaling impacts the binary representation and absolute error we
can observe.

3. In Section 7, we sample random dot products and compute the
probability of having an error larger than one using Monte Carlo.

4. In Section 8, we link data scaling to sparse matrix equilibration,
and instrument and evaluate the impact of a soft error in the
computationally intensive orthogonalization phase of GMRES.

5. Fault model

The premise of our work is that a silent, transient bit flip impacts
data. Before we can perform any analysis or experimental work,
we must define how such a bit flip would impact an algorithm, and
how we enforce that the bit flip was transient. To achieve this goal,
we build our model around the basic concept that when an algo-
rithm uses data, this translates into some set of operations being
performed on the data. Should a bit flip perturb our data, some
operation will use a corrupt value, rather than the correct value.
The output of this single operation will then contain a tainted value,
and this tainted value could cause the solution to be incorrect. Note
that a transient bit flip may cause a persistent error in the output
depending on how the value is used.

A side benefit of an operation-centric model is that we naturally
avoid a pitfall to which arbitrary memory fault injection succumbs,
namely that if a bit flip impacts data (or memory) that is never used
(read) then this fault cannot lead to a failure. Our fault model allows
a bit flip to perturb the input to an operation performed on the
data, while not persistently tainting the storage of the inputs. This
mimics how a transient bit flip would manifest itself, e.g., during
ALU activities. As a result, the data that experiences the bit flip
need not show signs that it was perturbed. This model allows us to
observe the impact of transient flips on the inputs, which results in
sticky or persistent error in the result. We then utilize mathematical
analysis to model how this persistent error propagates through the
algorithm.

5.1. Fault characterization

To derive a fault model we must first understand what a fault is.
Since floating-point numbers approximate real numbers and most
numerical algorithms use real values, we start from the definition
of a real-valued scalar � ∈ R. The range of possible values that � can
take is � ∈ [− ∞ , + ∞]. We assume that the IEEE-754 specification
for double-precision numbers, called Binary64, is used to represent
these numbers. This means that � can take a fixed set of numeric
values. The range of |� |, excluding 0 and denormalized numbers, is

|� | ∈ [1.0 × 2−1022, 1.9̄ × 21023]; (1)

where 1.9̄ indicates the largest possible fractional component, and
1.0 indicates the smallest fractional component.

To approximate real numbers, Binary64 uses 64 bits, of which
11 are devoted to the exponent, 52 for the fractional component

Download English Version:

https://daneshyari.com/en/article/430040

Download Persian Version:

https://daneshyari.com/article/430040

Daneshyari.com

https://daneshyari.com/en/article/430040
https://daneshyari.com/article/430040
https://daneshyari.com

