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a  b  s  t  r  a  c  t

Integrating  data-driven  surrogate  models  and  simulation  models  of  different  accuracies  (or  fidelities)
in  a single  algorithm  to address  computationally  expensive  global  optimization  problems  has  recently
attracted  considerable  attention.  However,  handling  discrepancies  between  simulation  models  with  mul-
tiple fidelities  in  global  optimization  is  a major  challenge.  To  address  it,  the  two  major  contributions  of
this paper  include:  (1)  development  of a  new  multi-fidelity  surrogate-model-based  optimization  frame-
work,  which  substantially  improves  reliability  and  efficiency  of  optimization  compared  to  many  existing
methods,  and  (2)  development  of  a data mining  method  to address  the discrepancy  between  the  low-  and
high-fidelity  simulation  models.  A new  efficient  global  optimization  method  is then proposed,  referred  to
as multi-fidelity  Gaussian  process  and  radial  basis  function-model-assisted  memetic  differential  evolu-
tion.  Its  advantages  are  verified  by  mathematical  benchmark  problems  and  a  real-world  antenna  design
automation  problem.

Crown  Copyright  © 2015  Published  by Elsevier  B.V.  All  rights  reserved.

1. Introduction

Solving many real-world engineering design problems requires
both global optimization and expensive computer simulation for
evaluating their candidate solutions. For example, computational
models utilized in photonics and microelectromechanical system
optimization require well over 1 h simulation time per design
[1–3]. For these problems, successful surrogate-model-assisted
local search methods have been developed [2], but in terms of
global optimization, many state-of-the-art surrogate-based opti-
mization techniques are still prohibitively expensive. In the context
of global optimization, these tasks are considered as very expensive.
Addressing such problems is the objective of this paper.

High cost of evaluating real-world simulation models often
results from the necessity of solving complex systems of partial
differential equations using numerical techniques or Monte-Carlo
analysis. Direct handling of such models is often computationally
prohibitive and utilization of cheaper representations (surrogates)
of the system at hand might be necessary. Two classes of such
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replacement models are normally considered. The first type is
function approximation model (usually, data-driven surrogates
constructed by approximating sampled simulation model data,
e.g., radial basis function). Optimization methods making use of
such models are often referred to as surrogate/metamodel-based
optimization (SBO) methods [4]. The other type is low-fidelity
simulation model (e.g., coarse-mesh model in finite element anal-
ysis), which exhibits relaxed accuracy but shorter evaluation time.
Low-fidelity model is typically used with occasional reference to
the high-fidelity model. The methods using such models are often
referred to as multi-fidelity/multilevel/variable-fidelity optimiza-
tion (MFO) methods [5]. For simplicity, two-level modeling is
considered in this paper: the coarse model is referred to as the
low-fidelity model, whereas the fine model is referred to as the
high-fidelity model.

Recently, a trend to combine SBO and MFO in a single algo-
rithm for further speed improvement has been observed; successful
examples include [6–9]. Refs. [6,9] demonstrated an approach
which iteratively updates a co-kriging surrogate model [10] using
samples from coarse and fine model evaluations accumulated
over the entire optimization process. These techniques are math-
ematically sound and often feature good reliability. However, the
success of these methods relies on a high-quality co-kriging sur-
rogate model constructed by the initial one-shot sampling, which
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Fig. 1. Curves of coarse and fine models.

determines the effectiveness of the consecutive adaptive sampling.
For higher-dimensional design spaces or complex function land-
scapes, the computational cost of building the initial high-quality
co-kriging model may  be prohibitive, as the necessary number of
training samples grows exponentially with linear increase of the
number of design variables [11].

In order to alleviate these difficulties, a new hierarchical algo-
rithm structure has been proposed in [7,8]: It can be considered as
an MFO, but SBOs are used for some optimization stages with cer-
tain fidelities to replace standard optimization methods without
data-driven surrogate models. For example, a coarse model is used
for a surrogate model-assisted evolutionary algorithm to explore
the space and accurate but expensive fine model evaluations are
only used for local search starting from the most promising solu-
tions obtained from space exploration [7,12]. These methods are
scalable if proper SBOs are used, but the reliability of the MFO
structure becomes a challenge, which is detailed as follows.

Because both the coarse and the fine model describe the same
function (or a physical system), it is reasonable to use the cheaper
coarse model for filtering out some non-optimal subregions. How-
ever, considering discrepancy between the models of various
fidelities, there is a lot of uncertainty regarding the “promising”
solutions found using the coarse model. Fig. 1 illustrates this issue
using an example of a microwave filter. The problem is to minimize
the maximum value of the reflection coefficient, i.e., max(|S11|) for
a given frequency range of interest. It can be observed by sweeping
one of the nine design variables of the device, that although many
non-optimal regions for the coarse model are also non-optimal for
the fine model, the two critical challenges appear:

• wasting precious fine model evaluations because some promising
locations of the coarse model-based landscape (such as A and its
projection A’, which may  correspond to multiple design variables)
may  have substantial distance to the desired optimal regions of
the fine model-based landscape (like B’);

• making the MFO  framework unreliable because the desired opti-
mum  such as the point B’ is difficult to be reached from points
such as A’ by exploitation. Note that only one variable is changed
in Fig. 1. When considering multiple design variables, the point B
may  have a low probability to be selected for exploitation because
there may  be quite a few points with better fitness values accord-
ing to the coarse model.

Clearly, the lower the fidelity of the coarse model, the higher
the efficiency of the space exploration stage of an MFO, but the
higher the risk induced by model discrepancy. Ref. [8] investigates

the discrepancy problem using practical antenna design cases and
indicates that, in many cases, a large number of fine model evalua-
tions may  be needed which may  result in the same or even higher
overall design optimization cost than that of direct optimization
of the fine model; also, the MFO  may  simply fail to find a satis-
factory design. There are some methods that do not directly use
the promising points from the coarse model optimization, include
equalization of the computational effort for models of each fidelity
[5], space mapping and model correction, where a correction func-
tion is applied to reduce misalignment between the coarse and the
fine model [8,13]. However, the above two critical challenges still
remain.

To address the above two challenges, a new MFO  framework
is proposed in this paper. Its goal is to make full use of avail-
able expensive fine model evaluations and substantially improve
the reliability compared to existing MFO  frameworks, and thus,
addressing the targeted very expensive design optimization prob-
lems. Based on this framework, a data mining method is proposed
to address the discrepancy between the coarse and the fine model.
A new method, referred to as multi-fidelity Gaussian process and
radial basis function-model-assisted memetic differential evolu-
tion (MGPMDE), is subsequently proposed. Empirical studies on
mathematical benchmark problems with different characteristics
as well as a real-world antenna design automation problem verify
the advantages of MGPMDE.

The remainder of this paper is organized as follows. Section
2 formulates the optimization problem and introduces the basic
techniques. Section 3 describes the new MFO framework, the data
mining method and the MGPMDE algorithm. Section 4 presents
the experimental results of MGPMDE on test problems. Concluding
remarks are provided in Section 5.

2. Problem formulation and basic techniques

2.1. Problem formulation

We consider the following problem:

min  ff (x)

x ∈ [ā, b̄]
d

(1)

where ff(x) is the fine model function, which is expensive but accu-
rate. There is a coarse model function, fc(x), which is much cheaper
than ff(x), but less accurate than ff(x), and, consequently, with a dis-
torted landscape. Ref. [5] provides an effective method to construct
mathematical benchmark problems for MFO, which is as follows.

ff (x) = fc(sf × (x − ss)) (2)

where fc(x) (also ff(x)) is a periodic function, and there exist min-
imal and maximal values in each period. sf is called a frequency
shift, which mimics the loss of peaks of fc(x). For example, when
fc(x) = cos(x), ff(x) can be cos(sf × (x)). When sf is set to 1.3, about
30% of the peaks are not accounted for by fc(x). ss is called a spatial
shift, which shifts the positions of the optimal points. The frequency
shifts and the spatial shifts often happen for expensive evalua-
tions obtained by solving suitable systems of partial differential
equations, where the coarse model is a coarse-mesh model and/or
with reduced number of solver iterations. This kind of expensive
optimization problem is very (if not the most) popular in computa-
tionally expensive engineering design optimization, because most
physics simulations (e.g., electromagnetic simulation) are based on
solving partial differential equations.

It is worth to determine the focused extent of discrepancy before
proposing methods to address it. From the point of view of prac-
tical industrial problems [2,5,14,15], we  focus on reasonably large
discrepancy between computational models of various fidelities in
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