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a  b  s  t  r  a  c  t

In  this  study,  the  motion,  deformation  and rotation  of  two elastic  membranes  in  a  viscous  shear  flow  in  a
microchannel  with  and  without  a groove  are  simulated  utilizing  a combined  LBM–IBM.  The  membranes
are  considered  as immersed  elastic  boundaries  in the  fluid  flow.  The  membranes  are  represented  in
Lagrangian  coordinates,  while  the fluid  flow  field  is  discretized  by  a uniform  and  fixed  Eulerian  mesh.
The  interaction  of  the  fluid  and  membranes  is modeled  using  an  appropriate  form  of  the  Dirac  delta
function.  Two  geometrically  different  channels,  namely,  a simple  channel  and  a channel  with  a  groove
are  considered.  In the  simple  channel  case,  when  the  membranes  are  placed  on  the  symmetry  axis  of  the
channel,  they  continue  to move  and  deform  without  any  lift force  and  rotation  induced.  However,  when
the  membranes  are located  off  the symmetry  axis,  the  pressure  difference  produced  in  the  flow  around
the membranes  would  apply  lift  forces  on  them  and expel  them  toward  the  center  of  the  channel.  In
the  case  of  channel  with  a groove,  it was  found  that  when  a membrane  tensile  modulus  was  reduced  its
flexibility  as  well  as  rotational  speed  would  increase.  This  would,  in  turn,  result  in  a  pressure  difference
in  the  flow  around  the  membrane.  The  pressure  difference  would  apply  a lift  force  on  the  membrane  and
move  it  out  of  the groove.  It is  worth  mentioning  that the results  of  the  present  simulation  have  a good
agreement  with  the  available  numerical  and  experimental  results.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Most natural, engineering, biological and medical problems
include the interaction of elastic solids and viscous fluids [1]. The
movement of an immersed object in a fluid including the particle
deposition process, the drug delivery through the blood, the red
blood cells shape change in the capillaries and arteries, etc. have
been studied by many researchers. The difficulty of dealing with
such problems would be due to complexity of the grid generation
and application of boundary conditions involved.

The numerical methods developed for solving such problems
are divided into two main categories: the dynamic- (moving-)
mesh approach and the fixed-mesh approach. In the dynamic mesh
approach, the computational domain is attached to the moving
object and is updated along with the object movement in the fluid
[2–4]. In the context of fixed mesh approach, various numerical
methods have been proposed [5–8], among which one may  refer
to the immersed boundary method (IBM). At first this method was
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introduced for modeling and simulation of blood flow in the heart
and heart valves dynamic [9–13]. In this approach, the Eulerian
fixed grid and the moving Lagrangian grid are used for the fluid
domain and the solid object, respectively. In this approach, the
immersed object in the fluid is considered as an object with flexible
boundary. The fluid motion over the object would result in small
deformations to its boundary. On the other hand, the object’s ten-
dency to return to the original state would create a force on the
interface between the fluid and the object. Once this force is cal-
culated on the Lagrangian grid points representing the object, the
effect of this force on the Eulerian grid points is calculated and is
added to the fluid domain equations to account for the effect of the
presence of the object. Therefore, in whole computational domain
the Navier–Stokes (N–S) equation must be solved with the forcing
term resulting from the presence of the object in fluid [8].

There have been many studies carried out to simulate the elas-
tic/rigid immersed body motion in a fluid using the IBM. In most
of these studies, the N-S equation has been solved using conven-
tional computational fluid dynamics (CFD) methods such as finite
difference, finite element and finite volume discretization meth-
ods. Fadlun et al. [14] presented finite difference IBM for modeling
fluid flow around a rigid object. The finite element-IBM has been
developed to study the interaction of a submerged elastic solid and
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a fluid flow [15,16]. During the past two decades, the lattice Boltz-
mann method (LBM) has matured to an alternative and efficient
numerical scheme for the simulation of fluid flows and transport
problems [17–19]. Unlike conventional numerical schemes based
on discretization of macroscopic continuum equations, the LBM is
based on microscopic models and mesoscopic kinetic equations.

The LBM has been successfully used to simulate the sin-
gle viscous fluid flow, the multi-component and multi-phase
flows [20,21], flows under the complex geometric boundary
conditions [22], suspension of fine particles and flow in micro-
channels [23,24], a variety of complex flows of Newtonian and
non-Newtonian fluids [25,26], diffusion-convection [27], diffusion-
reaction [28], wave equation [29] and Poisson’s equation [30]. The
LBM is not limited to the hydrodynamic equations. This method
can be used for simulation of processes that are difficult to be
modeled using continuous methods. These include the blood flow
in complex situations, the dynamics of blood components such as
red blood cells [31], platelets and materials such as artificial blood.
The LBM uses a fixed, regular grid rather than a time consuming
adaptive lattice. It calculates fluid properties and velocity using
the local values in a way that makes it suitable for massive par-
allel computing [19]. Unlike the conventional numerical methods
such as finite difference method, finite element method and bound-
ary element method that solve partial differential equations (PDEs)
to calculate the physical quantities directly, in LBM these quanti-
ties are calculated using a distribution function. In addition, the
corresponding PDE can be recovered directly by Chapman–Enskog
expansion [32].

Lately, a combination of LBM and IBM is used for simulating
the fluid–solid interaction involving rigid and/or flexible bound-
aries. Although many studies have been conducted on the motion
of rigid and elastic objects within a fluid, most of these studies have
focused on unbounded flows (infinite flow domain). In the limited
work carried out to simulate the motion and deformation of elas-
tic structures in shear flow, the numerical methods other than LBM
have been used. Feng and Michaelides [33] proposed the first model
of IBM–LBM. Their combined method involved most of the desir-
able properties of LBM and IBM. It uses an Eulerian grid (lattice)
for flow field and a Lagrangian grid to trace the dynamics of solid
particles (immersed object). This method not only represents the
boundary smoother than the LBM, but also prevents fluctuations of
velocities and forces acting on the object that can be seen in LBM.
In general, it is so powerful in solving the problems with structure
deformation [33]. This method was improved by Wu  and Shu [8]
and they implicitly calculated and applied the forces caused by the
fluid acting on the immersed boundary, which in fact had a signif-
icant impact on the cost and accuracy. They simulated the motion
of a particle in a typical shear flow and the motion of two  particles
in a channel using their proposed method.

Dupuis et al. [34] studied the flow over an impulsively started
cylinder at moderate Reynolds (Re) number. They investigated how
the coupling method of the forcing term between the Eulerian and
Lagrangian grids could affect the results.

Zhang et al. [35,36] studied the dynamic behavior of red blood
cell in shear flow and channel flow and investigated several hemo-
dynamic and rheological properties. Cheng et al. [37] have proposed
a proper model to simulate the fast boundary movements and high
pressure gradient occurred in the fluid–solid interaction. In their
research, mitral valve jet flow considering the interaction of leaflets
and fluid has been simulated. Navidbakhsh and Rezazadeh [38]
carried out a numerical study on the behavior of malaria-infected
red blood cell. Vahidkhah and Abdollahi [39] simulated the motion
of a massless elastic object in a two-dimensional viscous channel
flow numerically using IBM–LBM. Dadvand et al. [40] investigated
numerically the motion and deformation of a red blood cell in a
viscous shear flow utilizing a combined LBM–IBM. Le et al. [41]

used immersed interface method (IIM) to simulate the membrane
motion in a two-dimensional channel flow.

In the present work, the motion, deformation and rotation of
two elastic membranes in a viscous shear flow in a microchannel
with rectangular cross section are simulated utilizing a combined
LBM–IBM. Two geometrically different channels, namely, a simple
channel and a channel with a groove are considered. In the simple
channel case, the membranes are placed both on the symmetry axis
of the channel and off the symmetry axis.

2. Governing equations

It was  mentioned in introduction that in the IBM the fluid is rep-
resented on an Eulerian coordinate and the structure is represented
on a Lagrangian coordinate. A typical two-dimensional example of
an elastic solid membrane with curved boundary has been shown in
Fig. 1. Consider a flexible solid membrane with the curved bound-
ary � immersed in the two-dimensional incompressible viscous
fluid domain ˝.  The membrane boundary � is characterized by the
Lagrangian parameter s, and the fluid domain  ̋ is represented by
Eulerian coordinates �x.  Hence any point on the membrane can be
written as �X (s, t) where s is arc length, and t is time.

Hence, the equations governing the combination of fluid and
solid motions are as following:

∇ × �u = 0 (1)

�

(
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)

= −∇p + �∇2 �u+ �f
(�x, t

)
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To satisfy the no-slip boundary condition on the fluid–solid
interface, the velocity of any point on the solid surface must be
equal to that of the adjacent fluid particle, i.e.,
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)
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In the above equations, � and � are the mass density and
dynamic viscosity of the fluid, respectively. In addition, �u and p
indicate the velocity and pressure fields, respectively. The term �f
on the right-side of Eq. (2) denotes the membrane forces (tensile
and bending) due to the elastic boundary immersed in the fluid.

Eq. (3) indicates that the force density of the fluid �f
(�x, t

)
is

obtained from the force density of the membrane �F (s, t). Eq. (4) rep-
resents the no-slip condition at the fluid–solid interface, as the solid

Fig. 1. Schematic representation of immersed boundary (Lagrangian coordinates)
and  Eulerian mesh for fluid and spreading the Lagrangian force from the membrane
boundary points to the Eulerian nodes.
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