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a  b  s  t  r  a  c  t

With  big  data  becoming  available  across  the  physical,  life  and  social  sciences,  researchers  are turning
their  attention  to  the  question  of  whether  universal  statistical  signatures  emerge  across  systems.  Power-
laws  are a particularly  potent  example,  since  they  indicate  scale-free  or scale  invariant  behavior  and
are  observed  in  physical  systems  near  phase  transitions.  However,  the  same  scale-free  property  that
enables  them  to  unify  behaviors  across  multiple  spatiotemporal  scales,  also  means  that  usual  Gaussian-
based  approaches  cannot  be used  to test  their  presence.  Here  we  analyze  the  crucial  question  of how  to
implement  a power-law  test  efficiently,  given  that  a key  part  involves  multiple  Monte  Carlo  simulations
to  obtain  an  accurate  statistical  p-value.  We  present  such  a computational  scheme  in  detail.

©  2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Researchers from all disciplines are now experiencing rapidly
increasing availability of ‘big-data’ across multiple systems of inter-
est, whether social, economic, medical, biological or physical in
nature [1–7]. Not only is the precision of such data increasing, but
also the spatial and temporal resolution, e.g. price changes at res-
olutions down to the millisecond from a financial market [8–10]
or number of casualties with resolution down to individual intra-
day events from a human conflict [4,11]. One approach to analyzing
such data, favored in particular within the physics community, is
to look for possible universality of signals in the data since this
may  indicate universality in the system’s underlying mechanistic
dynamics – and hence ultimately, a simplification of real-world
complex systems into a finite number of classes of behavior. This
approach has been hugely successful in Physics with the study of
critical phenomena and phase transitions, dramatically reducing
the complex behaviors observed across disparate materials down
to a few universality classes [12]. The new wave of big data in other
disciplines now allows researchers to address whether such uni-
versality can extend to systems involving, for example, humans,
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and hence act as generic scientific signatures of behavior in living
systems [3].

Though still a research question in progress, particular univer-
salities have already been identified, including in human systems
(see for example, Refs. [3,7,13–16]). The universal signatures in
question concern a particular type of fat-tailed distribution p(x)
called a power-law [3,7,13–16,18,19]. As shown in Fig. 1(a) and (b),
a power-law differs from the well-known Gaussian (Normal or bell-
curve) distribution in that it has an algebraic tail at high x which,
according to the value of the exponent ˛, can lead to a mean and/or
standard deviation that is in principle infinite. This means that any
theories of that system built around average behavior with fluctua-
tions given by a Gaussian-fit standard deviation, will be inaccurate.
The reason why  it arises so much in physical systems, is that phase
transitions – which are highly important collective behaviors for
a system – have scaling properties that involve power-laws [12].
Suppose a distribution p(x) of, say, cluster sizes near a phase tran-
sition follows the form p(x) ∼ x−˛ in the high x limit (x > xmin) then
re-scaling x → 2x = x′ yields p(2x) ∼ (2x)−˛ ∝ x−˛ which means that
the distribution is invariant under a change of scale. This is called
scale-free or scale invariant and means that theories of the system
can be built which apply across all scales, as opposed to having to
describe the system at every different length or time scale and then
couple these different descriptions together.

Having explained the unique importance of a power-law distri-
bution, and hence of identifying a power-law distribution in data,
we turn to the focus of this paper: how can this power-law testing
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Fig. 1. Schematic comparison between traditional Gaussian distribution (i.e. normal or bell-curve) in (a) and power-law in (b), for data analysis. (c) Shows the log–log plot
of  a power-law. (d) Shows a log–log plot of the complementary cumulative distribution which is typically used since it is a less noisy than p(x).

be done in a computationally efficient way? One might think that
since taking logarithms of p(x) ∼ x−˛ yields a linear relationship log
p(x) = −  ̨ logx + constant, the task couldn’t be easier as illustrated in
Fig. 1(c) for p(x), or Fig. 1(d) for the cumulative distribution which
is typically preferred since it reduces noise in p(x). However this
would be a mistake, since such a linear regression has been shown
to be a biased estimator [19].

This paper focuses on implementing the widely utilized power-
law testing procedure of Ref. [19] which avoids this problem of
biased estimation. We  focus on presenting a particular proce-
dure for efficient computational implementation – specifically,
evaluation of the statistical p-values involving Monte-Carlo sim-
ulations. While we do not worry more about discussing real-world
data, Fig. 2 illustrates the results that emerge from direct appli-
cation of the procedure in this paper. The estimate of  ̨ is near
2.5 ≡ 5/2 [4,11]. This illustrates the potentially broader universality

Fig. 2. Example illustrating the complementary cumulative distribution shown in
Fig. 1(d), for empirical casualty data drawn from more than 9000 events in the recent
war  in Afghanistan [4]. Each event is a clash producing x casualties and hence having
size x. It is best fit by a discrete power-law with  ̨ = 2.37, xmin = 12 and p = 0.647. Solid
lines  represent the best fit to the data using the methods described in the text. These
methods produce an unbiased estimate, whereas a simple linear regression is biased
[19].

discussed above, since 5/2 has also been reported as the distribution
of stock transaction sizes, indicating that herd sizes of similar-
minded traders is power-law with that exponent [9]; and also the
size distribution of neuronal avalanches, given avalanche initiation
by a randomly chosen neuron (i.e. k · k−5/2 ≡ k−3/2 [20]); and even
the size distribution of pockets of superconducting coherence in
fragmented materials [21]. Interestingly, the value 5/2 is also very
close to the 2.3 values reported for the size distribution of gangs in
Chicago, and gangs in Manchoukuo in 1935 [22].

2. Background

We  start by giving the necessary preliminary information, fol-
lowing the notation of Ref. [19].

2.1. Power law p(x): continuous vs. discrete

Data is often discrete in nature, i.e. x is a discrete number
(integer), for example the number of casualties in a given event.
However for completeness, we analyze the two cases of discrete
and continuous x. For the continuous case of a power-law distribu-
tion, when  ̨ > 1, it is straightforward to show that:

p(x) = ˛ − 1
xmin

(
x

xmin

)−˛

(1)

In the discrete case, we  have:

p(x) = x−˛

�(˛, xmin)
(2)

where

�(˛, xmin) =
∞∑

n=0

(n + xmin)−˛ (3)
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