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We give some reductions among problems in (nonnegative) weighted #CSP which restrict
the class of functions that needs to be considered in computational complexity studies.
Our reductions can be applied to both exact and approximate computation. In particular,
we show that the recent dichotomy for unweighted #CSP can be extended to rational-
weighted #CSP.
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1. Introduction

The counting complexity of the weighted constraint satisfaction problem, for both exact and approximate computation,
has been an active research area for several years. See, for example, [1–18]. The objective is to give a precise categori-
sation of the computational complexity of problems in a given class. Easily the most significant development in this
stream of research was a recent result of Bulatov [1]. This establishes a dichotomy for exact counting in the whole of (un-
weighted) #CSP. The dichotomy is between problems in FP and problems which are #P-complete. Dyer and Richerby [16]
have given an easier proof of this theorem, and have shown it to be decidable [17].

In this paper, we study equivalences among problems in weighted #CSP. These equivalences can greatly simplify
the classes of problems which need to be considered in studies of computational complexity. A particular consequence
of these results is that the dichotomy for unweighted #CSP can be extended to nonnegative rational-weighted #CSP.
In the results we present here, the weights will usually lie in some subset of the nonnegative algebraic numbers, since
the proofs do not appear to extend to negative weights [18] or complex weights [5]. Neither do we consider general real
numbers, since we want our results to apply to standard models of computation and their complexity classes. An extension
to a suitable model of real number computation may be possible, though statements about complexity would need to be
modified appropriately.

The plan of the paper is as follows. In Section 1.1 we define the weighted constraint satisfaction problem and estab-
lish some notation. In Section 1.2, we define a notion of reducibility, which we call weighted reduction, that is used in all
our proofs. Its advantage is that the same reductions apply to both exact and approximate computation. Section 2 proves
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the equivalence of unweighted and rational-weighted #CSP. Section 3 shows that a weighted #CSP problem can be as-
sumed to have only one function, while retaining several useful restrictions on instances. Finally, in Section 4, we show that
any rational-weighted problem is computationally equivalent to an unweighted problem with only binary constraints. Thus
any #CSP problem is equivalent to a canonical digraph-labelling problem. This gives another proof of the equivalence of
unweighted and rational-weighted #CSP.

1.1. Weighted constraint satisfaction

Let Z, Q, Q and A denote the integers, rational numbers, real algebraic numbers, and (complex) algebraic numbers,
respectively. Let Z� , Q� and Q� denote the nonnegative numbers in Z, Q and Q, respectively. The positive integers Z� \{0}
will be denoted by N, and the positive algebraic numbers Q� \ {0} by Q> . Also B will denote {0,1} and, if n ∈ N, then [n]
will denote {1,2, . . . ,n}.

Let D = {0,1, . . . ,q − 1} (q ∈ N), which we call the domain, and K ⊆ A, which we call the codomain. Let

Fr(D,K) = {
f : Dr → K

}
, F(D,K) =

⋃
r�1

Fr(D,K),

denote the sets of functions of all arities from D to K. We will write r = r( f ) for the arity of f ∈ F(D,K). If r( f ) = 1, f is
called a unary function and, if r( f ) = 2, it is a binary function.

A problem #CSP(F ) is parameterised by a finite set F ⊂ F(D,K) for some D and K. An instance I of #CSP(F ) consists
of a finite set of variables V and a finite set of constraints C . A constraint κ = 〈vκ , fκ 〉 ∈ C consists of a function fκ ∈ F (of
arity rκ = r( fκ )) and a scope, a sequence vκ = (vκ,1, . . . , vκ,rκ ) of variables from V , which need not be distinct. A configura-
tion σ for the instance I is a function σ : V → D . If v = (v1, . . . , vr), we will write σ(v) for (σ (v1), . . . , σ (vr)). The weight
of the configuration σ is given by

w(σ ) =
∏
κ∈C

fκ
(
σ(vκ )

)
.

Finally, the partition function Z F (I) is given, for an instance I , by

Z F (I) =
∑

σ :V →D

w(σ ).

Then #CSP(F ) denotes the problem of computing the function Z F . We will write

#CSPq[K] = {
#CSP(F ): F ⊂ F(D,K), |D| = q

}
, #CSP[K] =

∞⋃
q=2

#CSPq[K].

The case q = 1 is clearly trivial, so we omit it from the definition of #CSP[K]. The case q = 2 is called Boolean #CSP[K].
If Γ is a set of relations, as in [1,2], we regard it as a set of functions F (Γ ) ⊂ F(D,B), so #CSP means #CSP[B]. If

R ∈ Γ is r-ary, we define f (R) ∈ F so that, for each a ∈ Dr , f (a) = 1 if a ∈ R , and otherwise f (a) = 0. Then we write
#CSP(Γ ) rather than #CSP(F (Γ )), and ZΓ rather than Z F (Γ ) .

We consider here only non-uniform #CSP, where D and F are considered to be objects of constant size. Thus it is only
the variable set V , and the constraint set C , that determine the size of an instance.

Various other restrictions on #CSP[K] have been considered in the literature, often in combination. For example, we
may insist that |F | = m, for some m ∈ N, particularly m = 1, e.g. [5]. We may insist that no function has arity greater
than r, for some r ∈ N, particularly r = 2, e.g. [4]. We may insist that no variable occurs more than k times in an instance,
e.g. [10]. We may insist that the functions in F possess some particular property, such as symmetry, e.g. [13]. We do not
consider these restrictions in any detail here. However, we will make use of the following restricted version of #CSP[K] in
Section 4.

A unary function which must be applied exactly once to each variable v ∈ V will be called a vertex weighting, and its
function values vertex weights. Thus, if λ : D → K is a vertex weighting, any instance I must contain exactly one constraint
of the form 〈(v), λ〉 for each v ∈ V . Observe that it is not necessary to allow multiple vertex weightings λ1, λ2, . . . , λm , since
these can be combined into one equivalent vertex weighting λ = λ1λ2 · · ·λm .

Our definition of vertex weights conforms to the use of similar terminology elsewhere, for example in [15]. We will
denote the problem with F ⊂ F(D,K) and vertex weighting λ : D → K by #CSP(F ;λ). The problem #CSP(F ;λ) is a
restriction on the inputs to an associated #CSP[K] problem, #CSP(F ∪ {λ}). In an instance of #CSP(F ∪ {λ}), 〈(v), λ〉 can
appear any number of times, including zero, for each v ∈ V ; in an instance of #CSP(F ;λ), each 〈(v), λ〉 appears precisely
once.

We will also consider approximate evaluation of Z F , meaning relative approximation. Thus, given ε > 0 we wish to
compute an estimate Ẑ F (I) of Z F (I), for all I , such that∣∣ Ẑ F (I) − Z F (I)

∣∣ � ε
∣∣Z F (I)

∣∣. (1)
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