
Journal of Computer and System Sciences 76 (2010) 464–474

Contents lists available at ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

Localising temporal constraints in scientific workflows

Jinjun Chen, Yun Yang ∗

CS3 – Centre for Complex Software Systems and Services, Faculty of Information and Communication Technologies, Swinburne University of Technology, PO Box 218,
Hawthorn, Melbourne, Australia 3122

a r t i c l e i n f o a b s t r a c t

Article history:
Received 20 March 2009
Received in revised form 20 August 2009
Available online 22 November 2009

Keywords:
Scientific workflow
Temporal constraint
Localisation

Temporal constraints are often set when complex e-science processes are modelled as
scientific workflow specifications. However, many existing processes such as climate
modelling often have only a few coarse-grained temporal constraints globally. This is not
sufficient to control overall temporal correctness as we can not find temporal violations
locally in time for handling. Local handling affects fewer workflow activities, hence more
cost effective than global handling with coarse-grained temporal constraints. Therefore, in
this paper, we systematically investigate how to localise a group of fine-grained temporal
constraints so that temporal violations can be indentified locally for better handling cost
effectiveness. The corresponding algorithms are developed. The quantitative evaluation
demonstrates that with local fine-grained temporal constraints, we can improve handling
cost effectiveness significantly than only with coarse-grained ones.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction and motivation

Scientific workflows often sit in sophisticated scientific applications such as climate modelling and astrophysics simula-
tion [2,3,11,20,23]. They enable complex scientific computation to be performed step by step [10,12,19,21,30].

In reality, scientific workflows are normally time constrained as temporal correctness is critical to ensure the usefulness
of execution results [4,8,13,22]. Consequently, temporal constraints are often set. The types of temporal constraints mainly
include: upper bound, lower bound and fixed-time [8,13]. An upper bound constraint between two activities is a relative
time value so that the duration between them must be less than or equal to it. A lower bound constraint between two
activities is a relative time value so that the duration between them must be greater than or equal to it. A fixed-time
constraint at an activity is an absolute time value such as 6:00pm by which the activity must be completed.

Comparing the three types of temporal constraints, we can find that conceptually a lower bound constraint is symmetri-
cal to an upper bound constraint while a fixed-time constraint is a special case of upper bound constraint. The reasons are
as follows. For a lower bound constraint, we often check whether the duration between its start and end activities is greater
than or equal to (�) its value while for an upper bound constraint, we often check whether the duration between its start
and end activities is less than or equal to (�) its value. Therefore, they are symmetrical to each other. As for a fixed-time
constraint, the first activity of a scientific workflow is actually its start activity. Hence, a fixed-time constraint can be viewed
as a special upper bound constraint whose start activity is the first activity and whose end activity is the one at which the
fixed-time constraint is. Nevertheless, an upper bound constraint is conceptually more general than a fixed-time constraint
as its start activity can be an intermediate activity rather than the first activity. Besides, different upper bound constraints
can have different start activities while all fixed-time constraints have the same one which is the first activity.

* Corresponding author.
E-mail addresses: jchen@swin.edu.au (J. Chen), yyang@swin.edu.au (Y. Yang).

0022-0000/$ – see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcss.2009.11.007

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
mailto:jchen@swin.edu.au
mailto:yyang@swin.edu.au
http://dx.doi.org/10.1016/j.jcss.2009.11.007


J. Chen, Y. Yang / Journal of Computer and System Sciences 76 (2010) 464–474 465

As such, in this paper, we focus on upper bound constraints only. The corresponding discussion and results can be
symmetrically applied to lower bound constraints and adaptively simplified for fixed-time constraints.

In many scientific workflows such as climate modelling, we often have only a few coarse-grained upper bound con-
straints globally [2,24]. From the perspective of user needs, only a few coarse-grained upper bound constraints are intuitive
and simple. However, from the perspective of specific scientific workflow execution, we cannot identify temporal violations
locally in time for handling. Local handling affects fewer workflow activities than global handling with coarse-grained con-
straints, hence more cost effective. Therefore, we must investigate how to localise a group of fine-grained upper bound
constraints based on coarse-grained ones so that we can identify temporal violations locally for better handling cost effec-
tiveness. The existing related work has presented some background for the temporal aspect in scientific workflows. [4,24]
analyses QoS (Quality of Service) including temporal QoS in scientific workflows on grid and discusses how to provide QoS
including time. [14] examines key challenges in scientific workflow area including time aspect. [5] investigates multiple
temporal consistency states in scientific/grid workflows. [16] discusses fault tolerance and recovery in scientific workflows
including time management. [18] proposes a reference architecture for scientific workflow management in service com-
puting environment. [25] analyses the overhead of scientific workflow execution in grid environment. [29] proposes a p2p
based scientific workflow management architecture with time management included. [22] presents a method for dynamic
verification of temporal constraints. [31] proposes a taxonomy for scientific workflow management. Several metrics are pro-
posed to categorise scientific workflow management with time as one of them. [6–8] propose several strategies for selecting
checkpoints for verifying temporal constraints.

However, the above existing work does not pay sufficient attention to how to localise fine-grained upper bound con-
straints. Hence, in this paper, we make an effort to fill this gap by systematically investigating the issue. We take one of
coarse-grained upper bound constraints as the example to discuss how to localise fine-grained upper bound constraints
within its timeframe. The corresponding results can be equally applied to each of other coarse-grained upper bound con-
straints. Based on the investigation, we develop the corresponding algorithms. With fine-grained upper bound constraints,
we can achieve better cost effectiveness significantly than only with coarse-grained ones. The quantitative evaluation further
demonstrates this result.

The paper is organised as follows. In Section 2, we summarise some time attributes of scientific workflows. In Section 3,
we discuss how to localise fine-grained upper bound constraints including assignment and adjustment of them. The corre-
sponding algorithms are developed. In Section 4, we conduct a quantitative evaluation which demonstrates that based on
these algorithms we can achieve better handling cost effectiveness significantly than only based on coarse-grained upper
bound constraints. Finally in Section 5, we conclude our contributions and point out future work.

2. Overview of timed scientific workflow representation

According to [1,17,27], based on the directed graph concept, a scientific workflow can be represented by a scientific
workflow graph, where nodes correspond to activities and edges correspond to dependencies between them. To represent
time attributes in a scientific workflow, we borrow some concepts from [13,22] such as maximum, mean or minimum
duration as a basis. We denote the ith activity of a scientific workflow as ai and its maximum duration, mean duration,
minimum duration, run-time start time, run-time end time and run-time completion duration as D(ai), M(ai), d(ai), S(ai),
E(ai) and R(ai), respectively. M(ai) means that statistically ai can be completed around its mean duration. Other time
attributes are self-explanatory. According to [9,28], D(ai), M(ai) and d(ai) can be obtained based on the past execution
history which covers the delay time incurred at ai such as setup delay, queuing delay, synchronisation delay, network
latency and so on. The detailed discussion on how to obtain and set D(ai), M(ai) and d(ai) is outside the scope of this
paper and can be found in [9,28]. For a specific execution of ai , the delay time is included in R(ai). Normally, we have
d(ai) � M(ai) � D(ai) and d(ai) � R(ai) � D(ai).

If there is a path from ai to a j (i � j), we denote the maximum duration, minimum duration, mean duration, run-time
real completion duration between them as D(ai,a j), d(ai , a j), M(ai , a j) and R(ai,a j), respectively [9,28]. If there is an upper
bound constraint between ai and a j , we denote it as U (ai,a j) and its value as u(ai,a j). For convenience, we only consider
one execution path in the scientific workflow without losing generality. As to a selective or parallel structure, for each
branch, it is an execution path. For an iterative structure, from the start to the end, it is still an execution path. Therefore,
for the selective/parallel/iterative structures, we can also apply the results achieved from one execution path.

Besides the above time attributes, four temporal consistency states have been identified and defined in [5,8] which are
SC (Strong Consistency), WC (Weak Consistency), WI (Weak Inconsistency) and SI (Strong Inconsistency). We summarise
their definitions in Definitions 1, 2 and 3. The detailed discussion about the four consistency states can be found in [5,8].

Definition 1. At build-time stage, U (ai,a j) is said to be of SC if D(ai,a j) � u(ai,a j), WC if M(ai,a j) � u(ai,a j) < D(ai,a j),
WI if d(ai,a j) � u(ai,a j) < M(ai,a j), and SI if u(ai,a j) < d(ai,a j).

Definition 2. At run-time execution stage, at checkpoint ap between ai and a j , U (ai,a j) is said to be of SC if R(ai,ap) +
D(ap+1,a j) � u(ai,a j), WC if R(ai,ap) + M(ap+1,a j) � u(ai,a j) < R(ai,ap) + D(ap+1,a j), WI if R(ai,ap) + d(ap+1,a j) �
u(ai,a j) < R(ai,ap) + M(ap+1,a j), and SI if u(ai,a j) < R(ai,ap) + d(ap+1,a j).



Download English Version:

https://daneshyari.com/en/article/430130

Download Persian Version:

https://daneshyari.com/article/430130

Daneshyari.com

https://daneshyari.com/en/article/430130
https://daneshyari.com/article/430130
https://daneshyari.com

