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a  b  s  t  r  a  c  t

We  present  a  discontinuous  Galerkin  method  (DGM)  for solutions  of  the Euler  equations  on Cartesian  grids
with embedded  geometries.  Cartesian  grid  methods  can  provide  considerable  computational  savings  for
computationally  intensive  schemes  like the  DGM.  Cartesian  mesh  generation  is  also  simplified  compared
to the  body  fitted  meshes.  However,  cutting  an  embedded  geometry  out  of the  grid  creates  cut  cells.  These
are difficult  to  deal  with  for  two  reasons:  the restrictive  CFL  number  and  irregular  shapes.  Both  of these
issues  are  more  involved  for the  DG  than  for  finite  volume  methods,  which  most  Cartesian  grid  techniques
have  been  developed  for. We  use  explicit  time  integration  employing  cell merging  to  avoid  restrictively
small  time  steps.  We  provide  an  algorithm  for splitting  complex  cells  into  triangles  and  use standard
quadrature  rules  on these  for numerical  integration.  To  avoid  the  loss  of  accuracy  due to  straight  sided
grids,  we  employ  the  curvature  boundary  conditions.  We  provide  a number  of  computational  examples
for smooth  flows  to demonstrate  the  accuracy  of  our  approach.

Crown Copyright  © 2012  Published  by  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Cartesian grid methods provide an appealing approach for solv-
ing problems in complex geometries due to the relative simplicity
of mesh generation which is often called the bottleneck of com-
putational fluid dynamics simulations. Creating a high quality
body-fitted mesh is a time-consuming process often requiring sig-
nificant user input. Cartesian mesh generation consists of cutting a
geometry from the Cartesian grid which is a more straightforward
process and one that can be made more automated [2].  However,
it creates the so-called cut cells where the Cartesian grid intersects
the boundary of the immersed body. Cut cells may  have irregular
shapes, which makes integration on them difficult. In addition, the
size of such cells can be magnitudes smaller than the size of regu-
lar grid cells. This results in a restrictive Courant–Friedrichs–Lewy
(CFL) condition when an explicit time integration scheme is used.
These two problems are major challenges in developing viable
numerical methods for solving convection dominated problems on
Cartesian grids.

A number of approaches have been proposed in the literature for
dealing with the time step restriction. A particularly simple idea is
to merge a small cut cell with its neighbors until a cell of a sufficient
size is created [7,3,18]. Though conceptually simple, this method is
difficult to implement robustly, especially for three-dimensional
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problems. This prompted development of other approaches such
as h-box [12] and flux redistribution [8] methods for finite volume
schemes. The h-box method works by reconstruction of the solution
on a cut cell using the information contained in a box of the size
of a regular cell. Flux redistribution allows only part of the flux to
be used to compute the solution on a small cell. A number of finite
difference methods seek to avoid time step restriction and to take
into account the curvature of the boundary in treating boundary
points, e.g. [9,20].  Finally, implicit time stepping is used in practical
applications and for solving Navier–Stokes equations [17,10,15].

Computational savings provided by the structure of Cartesian
grids can be especially beneficial for the computationally intensive
discontinuous Galerkin (DG) methods. Nearly every aspect of eval-
uation of integrals over a regular cell’s boundary and volume can
be simplified by exploiting the regularity of the grid. For example,
the mapping from physical elements to the canonical element is a
simple scaling on Cartesian grids which can simplify and speed-up
computing of gradients of the test functions. The issue that makes
the Cartesian grid approach for the DGM particularly difficult is
evaluation of the integral of the flux and a test function product in
(3) on cut cells. The integration is usually performed using a numer-
ical quadrature rule [13]. However, classical quadrature rules are
known only for standard elements such as triangles and quadri-
laterals. While generalized quadrature rules for arbitrary polygons
can be computed, e.g. [16], creation of such rules is expensive (a few
minutes for each polygon) and very sensitive to round-off errors.
This makes them unsuitable for our applications. An interesting
approach was proposed in [10]. They generate a quadrature rule
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for each cut cell by randomly choosing sampling points and com-
puting weights that guarantee that basis functions are integrated
exactly. The algorithm requires the number of integration points to
exceed the optimal number (upwards of 400 for p = 5) and might
suffer from a poor choice of points [15].

We  propose to compute the cell volume integration by splitting
each irregular cell into triangles and using a standard quadrature
rule on each one of them. This has several advantages. Firstly, the
quadrature rule is fast to generate and does not suffer from bad
conditioning arising either because of the location of the integra-
tion points or the cell’s shape. Secondly, it is more efficient as it does
not involve storage of the values of basis functions at these points
or reevaluation of them at each time step. The algorithm for split-
ting an arbitrary polygon into triangles is presented in Section 6. For
an arbitrarily shaped cut or merged cell, it might, and often does,
produce very thin triangles. This issue cannot be avoided without
remeshing, i.e. moving vertices near the boundary, which is diffi-
cult to make robust. It is known that numerical approximation on
such triangles can be poor [5]. For this reason, creating standard
shape cells from cut cells is likely to be detrimental even when
implicit time integration is used. However, it is easy to see and we
show this in Section 6, that numerical quadrature does not suffer
from thin element arising in splitting. For the same reason, i.e. to
avoid ill-conditioning associated with mapping a badly shaped cell
onto a canonical element, we define basis function on a rectangular
bounding box containing a cut or merged cell.

We use explicit time integration and cell merging to avoid time
step restriction imposed by small cut cells. The reasons for this
are as follows. Implicit time integrators are prohibitively expen-
sive for the DGM where the number of degrees of freedom increases
quickly with the order of approximation, especially in three dimen-
sions. Also, one of the main advantages of the DGM, i.e. the locality
of approximation, is lost when a global system is constructed in
implicit schemes. More involved techniques like the h-box and
flux distribution methods are not straightforward to adapt to the
discontinuous Galerkin framework. Both methods stabilize the
solution on a small cell by modifying the flux on its edges. How-
ever, the DGM has a contribution from the integral over cell volume
which needs to be stabilized as well.

The outline of this paper is as follows. We  give a description of
the general formulation of the RKDG method in Section 2. Sections
3 and 4 describe admissible cell types and the merging process.
Imposing solid wall boundary conditions are described in Section
5. Integration over cut cells is described in Section 6. In section 7, we
present numerical experiments which are followed by a discussion.

2. Discontinuous Galerkin formulation

In this paper, we consider the two-dimensional Euler equations
describing compressible, inviscid flows
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Here, � is the density, ux, uy are components of the velocity, E is the
internal energy and p is the pressure of the flow. For the ideal gas,
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.

We  take � = 1.4 for air. To describe the method, we rewrite (1) as a
general conservation law

∂tu(x, t) + divF(u(x, t)) = 0. (2)

The computational domain � is then divided into a collection of
elements

� =
⋃N

j=1
�j.

A Galerkin problem on element �j is constructed by multiplying
Eq. (2) by a test function v ∈ H1(�j), integrating the result on �j,
and using the Divergence theorem to obtain∫

�j

v∂tu d� −
∫

�j

grad v · F(u) d� +
∫

∂�j

vFn d� = 0, (3)

∀v ∈ H1(�j),

where ∂�j is the boundary of �j, Fn = F( u) · n, and n is the outward
facing normal vector. Several issues must be resolved before the
above weak form can be used as a numerical method.

The solution u is approximated by a piecewise-polynomial func-
tion U of degree up to p,

U j =
Np∑
i=1

cji(t)ϕi(x), (4)

where Np is the number of basis functions. The choice of basis
functions is described in Section 6.2.

The integrals in (3) need to be evaluated by quadrature rules.
We use the tensor product of one-dimensional Gauss–Legendre
quadrature on regular cells. Integration on arbitrarily shaped cut
cells is described in Section 6. Numerical flux is used to evaluate
the integrand in line integrals.

After discretization in space, Eq. (3) can be rewritten in an ODE
form as

d
dt

MC = Lh(C, t). (5)

C represents the vector of the coefficients cji(t) (i = 0, 1, . . .,  Np, j is
the elemental index) of the approximate solutions, and Lh(C, t) is
the righthand side of the ODE consisting of

∫
�j

gradv · F(u) d� and∫
∂�j

vFn d� in (3).  Due to the choice of basis functions, the mass

matrix M is a multiple of the identity matrix on regular cells.
Eq. (5) is solved using an ODE solver. To preserve stability of

the scheme, we  use the strong stability preserving (SSP) explicit
Runge-Kutta time discretization [19]. The size of a stable time step
depends on the order of a discontinuous Galerkin approximation
and the stability region of the chosen time integration scheme. For
p = 1, 2, 3 and an s-stage, s-order Runge-Kutta method (s = 2, 3), the
time step is given by

	t  � min
j

hj

(2p  + 1)|
j|
,  (6)

where hj is a measure of the cell size, p is the order of the polynomial
basis, and |
j| is the maximum wave speed. More details on the
particular implementation used here can be found in [11,6].

3. Mesh description

Generation of Cartesian grids is a more straightforward process
than creation of body fitted meshes. A fast and robust algorithm
that we  largely follow here is described in, e.g. [2].  We  assume that
the background Cartesian grid resolves the geometry to a reason-
able degree so that simulations can be carried out. However, we
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