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a  b  s  t  r  a  c  t

We  numerically  solve  a problem  for the  unsteady  transonic  small  disturbance  equations  that  describes
the  diffraction  of a  weak  shock  into  an  expansion  wave.  In the  context  of  a shock  moving  into  a  semi-
infinite  wall,  this  problem  describes  the  interaction  between  the  reflected  part  of the  shock  and  the  part
that  is  transmitted  beyond  the wall.  We  formulate  the equations  in self-similar  variables,  and  obtain
numerical  solutions  using  high  resolution  finite  difference  schemes.  Our  solutions  appear  to show  that
the shock  dies  out at the  sonic  line,  rather  than  forms  at an  interior  point  of  the  supersonic  region.

©  2012  Elsevier  B.V.  All  rights  reserved.

1. Introduction

In classical numerical simulations of steady transonic flow
over an airfoil, the shock which terminates the supersonic region
appears to form exactly on the sonic line (see, for example,
[1,3,5–7]). However, high-resolution numerical calculations done
on this problem and a corresponding situation in pseudo-steady
two-dimensional flow in [8] show that the shock actually forms
at a point where the underlying system (steady or self-similar) is
strictly hyperbolic, and the flow is supersonic. The calculations in
[8] show that the shock forms when compressive characteristics
reflect off the sonic line and converge inside the supersonic, hyper-
bolic region. This mechanism of shock formation had originally
been proposed by Guderley in [2].

The numerical experiments in [8] provide a direct observa-
tion of Guderley’s proposed supersonic shock formation. Those
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experiments suggest that shock formation generically occurs inside
the supersonic region and away from the sonic line, although it
may be possible in specific situations to cause the characteristics
to converge exactly on the sonic line.

In this paper we  numerically study a problem related to the
formation of a shock described above: it is the disappearance of
a shock that diffracts self-similarly into an expansion wave. We
express the governing equations in self-similar variables, and we
solve the self-similar equations using high-resolution schemes. We
obtain solutions that are highly refined in the area of the shock
disappearance point. In view of the numerical solutions for shock
formation in [8],  our solutions for shock disappearance are perhaps
surprising: they appear to show that the shock disappears exactly
on the sonic line, and not at a supersonic point.

We now describe the physical basis for the shock diffraction
problem we  solve here, which was  introduced in [4].  Consider
a weak plane shock moving at Mach number M slightly larger
than 1 into a semi-infinite wall, as in Fig. 1. This problem is self-
similar, so the solution depends only on (x/t, y/t), where x and y
are spatial coordinates and t is time. The incident shock diffracts
around the wall, and an expansion wave (dotted line) propa-
gates behind it. The reflected shock also diffracts around the wall,
meeting the diffracted expansion at the point S. At S, there is a
continuous transition from shock wavefront to expansion wave-
front, and one of the main questions concerning this transition
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Fig. 1. A weak shock moving downwards at slightly supersonic velocity, into and
past a semi-infinite wall. Solid lines are shocks; dotted lines are expansion waves.

point is whether or not it is sonic. It is the solution near S that
we seek.

An asymptotic matching analysis, described in [4],  shows that
the solution near a point such as S is given in the weak shock
limit by the solution of an “inner” shock-diffraction problem for
the unsteady transonic small disturbance equations (UTSDE). This
inner problem consists of the UTSDE together with matching data,
and is given in Section 2 (Eqs. (2.1) and (2.2)). In this paper, we
present numerical solutions of this inner shock-diffraction problem
for the UTSDE computed in self-similar coordinates. There are sev-
eral advantages to using our self-similar formulation rather than
the standard unsteady formulation of the equations. First, solv-
ing the problem in self-similar form enables local grid refinement
procedures to be implemented relatively easily, because solutions
of the self-similar equations are stationary. As well, a grid con-
tinuation procedure is possible, whereby solutions are partially
converged on coarse grids, interpolated onto more refined grids,
and ultimately fully converged on the most refined grid. Finally,
numerical evidence [9] suggests that shocks are captured more
sharply in numerical solutions of the self-similar equations than
in solutions of the unsteady equations. We  use extreme local grid
refinement in order to determine the nature of the flow (sonic or
supersonic) at the shock disappearance point S. Our motivation for
solving a problem for the UTSDE valid only near the shock disap-
pearance point, rather than solving a problem for the full Euler
equations on the global domain indicated in Fig. 1, is that, for
the same computational cost, we can obtain a much more finely
resolved solution near the area of interest – the shock disappear-
ance point – than we could using the Euler equations.

Preliminary numerical solutions of the shock-diffraction prob-
lem for the UTSDE were given in [4],  and appeared to indicate that
the shock disappears on the sonic line. The highly refined solu-
tions presented in this paper provide further evidence that the
shock disappearance point is exactly sonic (see Fig. 5, for example).
In addition, we give here a detailed description of the numerical
method, including a discussion of its stability. In this paper, we
also describe the effect of using different (linearized and “nonlin-
earized”) far field numerical boundary conditions, and we compare
and contrast our numerical solutions for the self-similar diffrac-
tion of a shock into an expansion wave with solutions for shock
formation in steady and pseudo-steady transonic flows.

The organization of the rest of the paper is as follows. In Section
2, we describe the shock-diffraction problem for the UTSDE, and in
Section 3 we outline the numerical method used to solve this prob-
lem. In Section 4 we present our numerical solutions, which provide
evidence that the shock disappearance point is a sonic point. In
Section 5, we  discuss questions raised by these solutions, and com-
pare them to the numerical solutions for the formation of shocks
in [8].  In Section 6 we summarize our conclusions.

2. The shock-diffraction problem for the UTSDE

The shock-diffraction problem for the UTSDE consists of the
UTSDE,
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Here, the variables u(x, y) and v(x, y) are proportional to the x and
y velocity components, respectively. The small positive parameter

 ̨ is proportional to the strength of the wave. Solutions of (2.1) and
(2.2) asymptotically describe, in the weak shock limit, solutions of
the full Euler equations near a point where a shock propagates into
a constant state and diffracts into an expansion wave. See [4] for
details of the formulation of this problem.

The problem (2.1) and (2.2) is self-similar, so its solution
depends only on � = x/t and � = y/t . Writing (2.1) in terms of � and
� we  get
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The initial condition (2.2) in the unsteady problem (2.1) and
(2.2) becomes a far field boundary condition in the corresponding
self-similar formulation of the problem. Writing (2.2) in terms of �
and � gives
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The far field behavior of v given in (2.4) follows from the far field
behavior of u and the second equation in (2.3). We  also have from
(2.2) that

u = 0, v = 0 for � + �2

4
sufficiently large and positive. (2.5)

Eqs. (2.3)–(2.5) are a formulation of the shock-diffraction prob-
lem in self-similar form. The data in boundary condition (2.4)
exactly satisfies the linearization of (2.3). However, this data is con-
tinuous and has a square-root singularity at the wavefront, which
in the linearized approximation is located at � + �2/4 =0. This is
qualitatively incorrect since, at the wavefront, the solution of the
nonlinear problem has a discontinuity across a shock and a finite
jump in its derivative across an expansion. The following “nonlin-
earized” far field boundary data, which has the correct qualitative
behavior at the wavefront (located in the nonlinearized approxi-
mation at � + �2/4 =0 for � < 0 and � + �2/4 =3˛2�2/4 for � > 0), was
obtained in [4]:
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