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a  b  s  t  r  a  c  t

We  propose  a  rapid  interpolation  method  of  computational  fluid  dynamics  (CFD)  solution  based  on
the  collocation  method  for  vascular  flows  through  the  polynomial  interpolation  and  present  a proof-of-
concept  computation  of  our  preliminary  results.  A  rapid CFD can  play  a crucial  role for  some  applications
such  as  the  hemodynamics  assessment  for human  vasculature  in  the  emergent  situation.  The  CFD
approach  for  the  real-time  assessment  at the  clinical  level  is, however,  not a  practical  tool  due  to  the
computational  complexity  and  the  long  time  integration  needed  for the  individual  CFDs.  We propose  an
efficient,  accurate,  yet  fast interpolation  method  of  finding  CFD  solutions  that  can  be  utilized  for  the real-
time  hemodynamic  analysis  for clinicians.  The  main  idea  of the  method  is  to use  the  vascular  library  where
vascular  solutions  with  different  parameter  values  are  pre-computed  and  stored.  The  desired  unknown
CFD solution  is obtained  via  the  interpolation  using  the  similar  solutions  from  the  library.  We use  the
spectral  collocation  method  for  the  individual  CFD  solutions.  The  collocation  method  makes  it  easier
to  map  the  solution  from  the physical  domain  to the  reference  domain  for the  interpolation  using the
homeomorphic  transformation.  The  interpolation  is  then  directly  constructed  using  the solution  fields  at
the collocation  points.  Our  preliminary  results  for  vascular  flows  of 3D  stenosis  show that  the  proposed
method  is fast  and  accurate.

©  2012  Elsevier  B.V.  All rights  reserved.

1. Introduction

The main purpose of this paper is to propose a simple inter-
polation method of finding computational fluid dynamics (CFD)
solution on the collocation points via the solution library concept
and provide the proof-of-concept computation of our preliminary
results. The proposed method is to obtain a fast CFD solution with-
out running the actual CFD simulations of the individual solutions.
The motivation is from the persistent demand that the fast and
accurate hemodynamic evaluation of human vasculature is crucial
for the reliable vascular assessment in the emergent situation to
save human lives. The real-time CFD computation is not an option
for clinicians in the emergent situation due to its computational
complexity. To avoid the actual CFD computation and obtain the
accurate unknown CFD solution extremely fast, we  propose to use
the CFD library where the individual CFD solutions with differ-
ent parameter values are pre-computed and stored and use those
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pre-computed CFD solutions as the interpolation basis for the
unknown CFD solution.

Similar ideas were already proposed such as the reduced basis
method (RBM) [14,15,18,19].  The basic framework of the RBM is
the proper mapping from the physical frame to the reference frame
where the actual computational approximation is carried out. In lit-
erature, the RBM method was realized based on the finite element
method (FEM) [13] or the discontinuous Galerkin (DG) method [3]
for which the local or global basis functions are mapped accord-
ing to the geometric deformation. The parameters that determine
the mapping are plugged into the given partial differential equa-
tions (PDEs) and the new equations containing the parameters are
derived. If the sample solutions are pre-computed, they are used
for the unknown solution as the approximation basis according to
the derived equations. Some of recent works of RBM can be also
found in the special issue of ICOSAHOM 2009 [3,8,13].

We propose a more direct approach using the collocation
approach. That is, the unknown solution is approximated directly
via the standard interpolation scheme using the physical values
defined on the collocation points. If the given parameter value is
associated with the geometry, the pre-computed physical solutions
on the collocation points are mapped into the reference frame via
the homeomorphic mapping and the unknown solution is directly
approximated via the interpolation. The homeomorphic mapping
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is applied for the problem that has the topological equivalence for
its individual solutions. If the parameter is not associated with the
geometry, the interpolation is even more straightforward without
any geometric mapping. We  can adopt the pre-existing interpola-
tion schemes such as the standard polynomial interpolations and
radial basis function (RBF) interpolations [2] to utilize the proposed
method.

For the proposed method, we assume the following:

(1) There exists an interval of non-zero measure in the parameter
space where the parameter values of the associated unknown
solution exist.

(2) In such an interval, the function varies smoothly so that the
solution fields also vary smoothly without a discontinuity. This
yields a well-defined interpolation.

(3) We  can refine the interval if necessary.

With these assumptions, once we find such intervals where the
solution is smooth and we  know a priori that the unknown solution
is defined by the parameters that exist in the found interval, the
unknown solution can be found via a simple interpolation method
such as the polynomial interpolation.

There are couple of issues that should be carefully investigated
further, which we do not attempt to resolve in this paper but leave
as our future research subjects:

(1) Adaptive re-sampling technique: if the smooth interval is
found, such an interval can be refined using the re-sampling
method and the corresponding pre-computed CFD solutions are
identified accordingly. The re-sampling not only increases the
degree of accuracy but also avoids the ill-conditioning of the
interpolation matrix and the possible Runge effect.

(2) Metric measurement: for vascular flows, the metric quantities
are more important than the physical variables that appear in
the governing equations. These metrics include the vorticity,
the degree of recirculation, the on-set of turbulence, etc. The
metric quantities enable the smooth intervals to be found effi-
ciently. For example, if there exists a bifurcating point in the
parameter space, the interpolation across the bifurcation point
will provide a poor convergence to the desired solution due to
the possible jump discontinuity in the pre-computed solution
basis. For this case, the corresponding metric quantity helps
separate the region so that the new interval for the interpolation
does not contain the bifurcation point.

(3) Fast search algorithm: when multiple parameters are involved,
a fast search algorithm of the similar CFD solutions to the given
parameter values of the unknown CFD solution is needed.

(4) The interpolation scheme for the time-dependent problems:
for our preliminary research we focus on the steady-state solu-
tions, but the proposed method is still applicable. For the
time-dependent pulsatile flows the proposed method can be
applied to few sample solutions within the pulsatile period.

(5) Extremely high value of percent stenosis: there may  be a math-
ematical bifurcation in the linearity of the solutions when
percent stenosis becomes extremely high. If recirculations
become dominant and bifurcation occurs, the re-sampling
method should be applied to have the interpolation well
defined.

Leaving all these issues in our future work, we consider a sim-
ple model of the 3D stenotic CFD based on the collocation method
and interpolate the unknown solution directly on the collocation
space. The preliminary results are provided. To explain the sim-
ple interpolation procedure, we first use the simple 1D and 2D
examples.

The paper is composed of the following sections. In Section
2, we  explain the incompressible Navier–Stokes equations as the
governing equations for vascular flows and the multi-domain spec-
tral collocation method is explained to approximate the governing
equations. In Section 3 we explain the solution library and the
homeomorphic transformation to map  the obtained CFD solutions
into the reference domain where the interpolation is made for
the unknown CFD solution. Section 4 explains the interpolation
methods to find the unknown CFD solution using the similar CFD
solutions from the solution library. Section 5 provides the prelim-
inary numerical results. Section 6 provides a brief conclusion.

2. Governing equations and numerical methods

2.1. Incompressible Navier–Stokes equations

For the vascular flow equations, we  use the Eulerian representa-
tion of flows with density � = �(x, t), pressure P = P(x, t), and velocity
vector u = (u, v, w)T , for x = (x, y, z)T ∈ ˝,  t ∈ R

+, where  ̋ is the
closed domain of vascular fluid,  ̋ ⊂ R

3, and u, v, and w are the
component of u in x, y, and z directions, respectively [20]. We
assume that the blood flow is Newtonian. Such an assumption does
not precisely describe the exact behavior of vascular flows, but the
Newtonian assumption suffices for the purpose of our work. We
assume the smoothness of flows in the parameter space and do not
consider extreme geometries. Then the governing equations are
given by the Navier–Stokes equations with the mass conservation
laws

�(ut + (u · ∇)u) − ��u − (3�  + �)∇(∇ · u) + ∇P = f, (1)

�t + ∇ · (�u) = 0, (2)

where � ∈ R
+ is the kinematic viscosity, � ∈ R  is a constant and f

denotes the external force of blood flows. Further, we assume that
the blood flow is homogeneous both in x and t and incompressible.
That is, � = �o > 0 is a non-zero constant for all x and t. Also, we
assume that there is no external force, such as f = 0. Then we have

�(ut + (u · ∇)u) − ��u + ∇P = 0, (3)

∇ · u = 0. (4)

Here for numerical convenience, we  use the nondimensionalization
of the above equation. For the nondimensionalization, we  use the
physical and geometrical parameter values of the normal blood.
These are the length scale xo = 0.26, the unit velocity uo = 30, the
time scale to = 6.7 × 10−3, the unit pressure Po = 900, the unit den-
sity �o = 1, and the unit kinetic viscosity � = 0.0377 (all in cgs units).
Then the nondimensionalized incompressible Navier–Stokes equa-
tions are given by

ut + (u · ∇)u − ��u + ∇p = 0,

∇ · u = 0,
(5)

where we  can consider each variable as the scaled variable by
the reference values given above. For example, � = �′/�o where ′

denotes the variable in Eq. (3) and p = P′/�o. The constant � can be
considered as the Reynolds number of the flow, that is,

1/� = Re = �oxouo

�
. (6)

Projection method: There are different ways of solving Eq. (5).
One of them is the projection method [5,20],  for which the interme-
diate velocity field is first solved using the convection and diffusion
parts of the equation. Then by the incompressibility condition
∇ · u = 0, the pressure is obtained using the Poisson equation. The
intermediate velocity fields are again updated using the obtained
pressure.
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