PKI-587 and Sorafenib Targeting PI3K/AKT/mTOR and Ras/Raf/MAPK Pathways Synergistically Inhibit HCC Cell Proliferation

Roberto Gedaly, M.D.,^{*,1} Paul Angulo, M.D.,[†] Jonathan Hundley, M.D.,^{*} Michael F. Daily, M.D.,^{*} Changguo Chen, Ph.D.,^{*} and B. Mark Evers, M.D.^{*,‡}

*Department of Surgery; †Department of Internal Medicine; and ‡Markey Cancer Center, University of Kentucky, College of Medicine, Lexington, Kentucky

Originally submitted August 18, 2011; accepted for publication October 27, 2011

Background. Deregulated Ras/Raf/MAPK and PI3K/ AKT/mTOR signaling pathways are found in hepatocellular carcinoma (HCC). This study aimed to test the inhibitory effects of PKI-587 and sorafenib as single agents or in combination on HCC (Huh7 cell line) proliferation.

Materials and Methods. ³H-thymidine incorporation and MTT assay were used to assess Huh7 cell proliferation. Phosphorylation of the key enzymes in the Ras/Raf/MAPK and PI3K/AKT/mTOR pathways was detected by Western blot.

Results. We found that PKI-587 is a more potent PI3K/mTOR inhibitor than PI-103. Combination of PKI-587 and sorafenib was a more effective inhibitor of Huh7 proliferation than the combination of PI-103 and sorafenib. Combination of PKI-587 and sorafenib synergistically inhibited epidermal growth factor (EGF)-stimulated Huh7 proliferation compared with monodrug therapy. EGF increased phosphorylation of Ras/Raf downstream signaling proteins MEK and ERK; EGF-stimulated activation was inhibited by sorafenib. However, sorafenib, as a single agent, increased **AKT (Ser473) phosphorylation. EGF-stimulated AKT** (ser473) activation was inhibited by PKI-587. PKI-587 is a potent inhibitor of AKT (Ser473), mTOR (Ser2448), and S6K (Thr389) phosphorylation; in contrast, rapamycin stimulated mTOR complex 2 substrate AKT(Ser473) phosphorylation although it inhibited mTOR complex 1 substrate S6K phosphorylation. PKI-587, as a single agent, stimulated MEK and ERK phosphorylation. However, when PKI-587 and sorafenib were used in combination, they inhibited

¹ To whom correspondence and reprint requests should be addressed at Department of Surgery, University of Kentucky, College of Medicine, 800 Rose Street, Room C453, Lexington, KY 40536-0293. E-mail: rgeda2@uky.edu. all the tested kinases in the Ras/Raf /MAPK and PI3K/ AKT/mTOR pathways.

Conclusion. The combination of PKI-587 and sorafenib has the advantage over monodrug therapy on inhibition of HCC cell proliferation by blocking both PI3K/AKT/mTOR and Ras/Raf/MAPK signaling pathways. © 2012 Elsevier Inc. All rights reserved.

Key Words: epidermal growth factor; sorafenib; PKI-587; PI-103; rapamycin; mTOR complex 1; mTOR complex 2; negative feedback loop.

INTRODUCTION

Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver; it ranks fifth among the most diagnosed cancers and represents the third most common cause of cancer-related deaths worldwide [1].

Recent publications indicate that HCC cell activation by different factors is known to involve several signaling pathways, including the Ras/Raf/MAPK pathway, the PI3K/AKT/mTOR pathway, the WNT/\beta-Catenin pathway, the Hedgehog pathway, and the Hippo tumor suppression pathway [2, 3]. Among them, the Ras/Raf/ MAPK and the PI3K/AKT/mTOR pathways are the most critical pathways in the development and proliferation of HCC and have been extensively investigated. The Ras/Raf/MAPK pathway is typically activated in HCC as a result of increased signaling induced from upstream growth factors and due to inactivation of tumor suppressor genes [4]. The PI3K/AKT/mTOR signaling pathway plays an important role in HCC and is activated in 30%–50% of HCC. The ribosomal protein S6 (RPS6), a target of p70S6K, is aberrantly activated in 50% of HCC [5]. Despite enormous efforts, the etiology

of HCC tumorigenesis, progression, and recurrence remains unclear. There is a critical need to identify more effective regimens to treat HCC and to prevent tumor recurrence.

The anti-cancer drug sorafenib is a multi-kinase inhibitor of more than a dozen kinases at high potency [6]. Sorafenib has been shown to inhibit tumor cell proliferation by inhibiting the Ras/Raf/MAPK pathway and to suppress angiogenesis by blocking VEGFR and PDGFR signaling. A recent clinical trial evaluating the treatment of advanced HCC using sorafenib has obtained promising results [7]. However, sorafenib does not directly block the PI3K/AKT/mTOR pathway in HCC. It was reported that sorafenib could even increase phosphorylation of mTOR targets (S6K and 4EBP1) [8] and to activate mTOR complex 2 activity [9]. To overcome this problem, sirolimus (a rapalog) has been used by other researchers in combination with sorafenib to target the PI3K/AKT/mTOR pathway. Our group recently used PI-103, a dual PI3K/mTOR inhibitor, in combination with sorafenib to inhibit HCC proliferation and found that the two drugs can inhibit HCC synergistically by blocking both Ras/Raf/MAPK and the PI3K/AKT/mTOR pathways [9]. Recently, a novel drug PKI-587, which has similar mechanism of action as PI-103, has demonstrated potent inhibitory effects on several human cancer cell lines such as melanoma, glioma, lung, colon, and breast cancers [10] in preclinical studies. PKI-587 has been approved by the FDA and is currently being evaluated in a phase 1 clinical trial. PKI-587 is a chemically synthesized small molecule that specifically inhibits PI3K class-IA and mTOR complex 1 (mTORC1) and complex 2 (mTORC2) [11]. The aim of this study was to evaluate the antiproliferative effect of PKI-587 and sorafenib, as single agents and in combination, and their effects on Ras/Raf/ MAPK and PI3K/AKT/mTOR signaling pathways.

MATERIALS AND METHODS

Cell Culture

The human HCC cell line, Huh7, was cultured in DMEM (Cat# 12100-046) medium (Invitrogen, Carlsbad, CA) +10% heat inactivated FBS in a 37° C incubator with 5% CO₂ in the air.

Chemicals and Antibodies

PKI-587 was a generous gift from Pfizer Inc. (New York, NY). Other chemicals and antibodies were purchased as described previously [9].

³H-Thymidine Incorporation Assay

Huh7 cells were plated in 96-well plates at 1000 cells/well in 0.2 mL DMEM +10% FBS and treated with various concentrations of the sorafenib and PKI-587, as single agents or in combination, and cultured for 72 h. ³H-thymidine incorporation assay was performed according to our published methods [9].

MTT Assay

Huh7 cells were plated in 96-well plates at 5000 cells/well (n = 12) in 100 μ L of DMEM+10%FBS and cultured for 24 h. The cells were then cultured in 1% FBS or in 10% FBS in DMEM for 24 h. EGF, sorafenib, or PKI-587 was then added to the cells and cultured for another 48 h. Carrier DMSO was used as a vehicle control (<0.1% final concentration). MTT assay was performed as previously described [9].

Western Blot

Huh7 cells were cultured in DMEM+10%FBS in 100 \times 20 mm tissue culture dishes until ~70% confluent. The cells were treated with sorafenib (10 μ M), PKI-587(1 μ M), rapamycin (20 nM), for 1h, then treated with EGF (6.5 nM) for 15 min. All the other procedures were performed as previously described [9].

Statistical Analysis

All analyses were performed using the software SPSS ver. 18 (SPSS Inc., Chicago IL). Data are presented as mean \pm SE. For nominal data, ANOVA followed by Tukey multiple range test was used; for two groups of continuous data, paired *t*-test was used. The level of statistical significance was set at P < 0.05.

RESULTS

PKI-587 More Potently Inhibits Huh7 Proliferation than PI-103

Huh7 cells were treated with PKI-587 or PI-103 at various concentrations (0–1000 nM). The results of ³H-thymidine incorporation indicated the IC50 (50% Inhibition concentration) of PKI-587 was 39 nM; the IC50 of PI-103 was 368 nM. Therefore, PKI-587 is about nine times more potent than PI-103 (Fig. 1).

We also found that the combination of PKI-587 with sorafenib was more potent than the combination of PI-103 and sorafenib on inhibition of Huh7 proliferation (Fig. 2).

EGF-stimulated Huh7 proliferation in DMEM +1% FBS or in DMEM +10% FBS was synergistically and significantly inhibited by PKI-587 and sorafenib.

Since ³H-thymidine incorporation detects DNA synthesis in a short time period, we used MTT assay to determine if sorafenib and PKI-587 can inhibit Huh7 proliferation over a longer period of treatment. We found that EGF, at a concentration of 2.5 nM, optimally stimulates Huh7 proliferation in both culture conditions (DMEM +1% or 10% FBS). When the cells were cultured in 1% FBS, EGF (2.5 nM) stimulated Huh7 proliferation 42% compared with control (P < 0.01; n = 12). The EGF-stimulated Huh7 proliferation was inhibited 69% (P < 0.001: n = 12) by sorafenib (at 2.5 μ M). PKI-587 (0.5 μ M) inhibited EGF-stimulated Huh7 proliferation 57% (P < 0.001; n = 12). Combination of the PKI-587 and sorafenib synergistically inhibited EGF-stimulated Huh7 proliferation by 81% (P < 0.001; n = 12). The effect of the drug combination was significantly different from the inhibitory effect of Download English Version:

https://daneshyari.com/en/article/4301938

Download Persian Version:

https://daneshyari.com/article/4301938

Daneshyari.com