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In this note we introduce a notion of a generically (strongly generically) NP-complete 
problem and show that the randomized bounded version of the halting problem is strongly 
generically NP-complete.

© 2016 Elsevier Inc. All rights reserved.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1269
2. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1269

2.1. Decision problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1269
2.2. Deterministic and nondeterministic Turing machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1270
2.3. Polynomial time reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1271

3. Distributional problems and generic case complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1272
3.1. Distributional decision problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1272
3.2. Generic complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1272
3.3. Distributional NP-problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1273

4. Generic Ptime reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1274
4.1. Change of size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1274
4.2. Change of measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1275
4.3. Reduction to a problem with the binary alphabet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1276
4.4. On restrictions of problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1277

5. Distributional bounded halting problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1277
6. Open problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1281

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1281

✩ The work was partially supported by NSF grant DMS-1318716.

* Corresponding author.
E-mail addresses: amiasnik@stevens.edu (A. Miasnikov), aushakov@stevens.edu (A. Ushakov).

http://dx.doi.org/10.1016/j.jcss.2016.05.002
0022-0000/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jcss.2016.05.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
mailto:amiasnik@stevens.edu
mailto:aushakov@stevens.edu
http://dx.doi.org/10.1016/j.jcss.2016.05.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcss.2016.05.002&domain=pdf


A. Miasnikov, A. Ushakov / Journal of Computer and System Sciences 82 (2016) 1268–1282 1269

1. Introduction

We introduce and study problems that are generically in NP, i.e., decision problems that have partial errorless nondeter-
ministic decision algorithms that solve the problem in polynomial time on “most” inputs. We define appropriate reductions 
in this class and show that there are some complete problems there, called strongly generically NP-complete problems. In 
particular, the randomized bounded version of the halting problem is one of them.

Rigorous formulation of notions of generic algorithms and generic complexity appeared first in group theory [17,18] as 
a response to several challenges that algorithmic algebra faced at that time. First, it was well understood that many hard, 
even undecidable, algorithmic problems in groups can be easily solved on most instances (see [17,18,8,21] for a thorough 
discussion). Second, the study of random objects and generic properties of objects has become the mainstream of geometric 
group theory, following the lead of graph and number theory (see [9–11,23,1,4,3]). It turned out that “random”, “typical” 
objects have many nice properties that lead to simple and efficient algorithms. However a rigorous formalization of this 
approach was lagging behind. Algorithmic algebra was still focusing mostly on the worst-case complexity with minor inroads 
into average case complexity. Third, with the rapid development of algebraic cryptography the quest for natural algorithmic 
problems, which are hard on most inputs, became one of the main subjects in complexity theory (see discussion in [21]). 
It was realized that the average case complexity does not fit well here. Indeed, by definition, one cannot consider average 
case complexity of undecidable problems, which are in the majority in group theory; the proofs of average case results are 
usually difficult and technical [12,25], and, most importantly, there are problems that are provably hard on average but easy 
on most inputs (see [8,21] for details). In fact, Gurevich showed in [12] that the average case complexity is not about “most” 
or “typical” instances, but that it grasps the notion of “trade-off” between the time of computation on hard inputs and how 
many of such hard instances are there. Nowadays, generic algorithms form an organic part of computational algebra and 
play an essential role in practical computations.

In a surprising twist generic algorithms and ideas of generic complexity were recently adopted in abstract computability 
(recursion theory). There is interesting and active research there concerning absolutely undecidable problems, generic Turing 
degrees, coarse computability, etc., relating generic computation with deep structural properties of Turing degrees [20,16,2,
14,6,5].

We decided to relativize these ideas to lower complexity classes. Here we consider the class NP. Motivation to study 
generically hardest problems in the class NP comes from several areas of mathematics and computer science. First, as 
we have mentioned above, average case complexity, even when it is high, does not give information on the hardness of 
the problem at hand on the typical or generic inputs. Therefore, to study hardness of the problem on most inputs one 
needs to develop a theory of generically complete problems in the class NP. This is interesting in its own right, especially 
when much of activity in modern mathematics focuses on generic properties of mathematical objects and how to deal 
with them. On the other hand, in modern cryptography, there is a quest for cryptoprimitives which are computationally 
hard to break on most inputs. It would be interesting to analyze which NP-problems are hard on most inputs, i.e., which 
of them are generically NP-complete. Note, there are NP-complete problems that are generically polynomial [21]. All this 
requires a robust theory of generic NP-completeness. As the first attempt to develop such a theory we study here the class 
of all generically NP-problems, their reductions, and the complete problems in the class. Most of the time, our exposition 
follows the seminal Gurevich’s paper [12] on average complexity. We conclude with several open problems that seem to be 
important for the theory.

Here we briefly describe the structure of the paper and mention the main results. In Section 2, we recall some no-
tions and introduce notation from the classical decision problems. In Section 3, we discuss distributional decision problems 
(when the set of instances of the problem comes equipped with some measure), then define the generic complexity and 
problems decidable generically (strongly generically) in polynomial time. In Section 4, we define generic polynomial time re-
ductions. In Section 5, we show that the distributional bounded halting problem for Turing machines is strongly generically 
NP-complete. Notice that though generic Ptime randomized algorithms are usually much easy to come up with (than say 
Ptime on average algorithms), the reductions in the class of generic NP-problems are still as technical as reductions in the 
class of NP-problems on average. In fact, the reductions in both classes are similar. Essentially, these are reductions among 
general randomized problems and the main technical, as well as theoretical, difficulty concerns the transfer of the measure 
when reducing one randomized problem to another one. It seems this difficulty is intrinsic to reductions in randomized 
computations and does not depend on whether we consider generic or average complexity. In Section 6 we discuss some 
open problems that seem to be important for the development of the theory of generic NP-completeness.

2. Preliminaries

In this section we introduce notation to follow throughout the paper.

2.1. Decision problems

Informally, a decision problem is an arbitrary yes-or-no question for an (infinite) set of inputs (or instances) I , i.e., an unary 
predicate P on I . The problem is termed decidable if P is computable, and the main classical question is whether a given 
problem is decidable or not. In complexity theory the predicate P usually is given by its true set L = {x ∈ I | P (x) = 1}, 
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