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We study definability of second-order generalized quantifiers. We show that the question
whether a second-order generalized quantifier Q1 is definable in terms of another
quantifier Q2, the base logic being monadic second-order logic, reduces to the question
if a quantifier Q�

1 is definable in FO(Q�
2,<,+,×) for certain first-order quantifiers Q�

1
and Q�

2. We use our characterization to show new definability and non-definability results
for second-order generalized quantifiers. We also show that the monadic second-order
majority quantifier Most1 is not definable in second-order logic.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The notion of generalized quantifier goes back to Mostowski [1] and Lindström [2]. Generalized quantifiers were first
mainly studied in the framework of model theory. The study of generalized quantifiers extended to the context of finite
model theory via applications to descriptive complexity theory. We refer to [3] and [4] for surveys of first-order generalized
quantifiers in finite model theory. Generalized quantifiers have been also extensively studied in the formal semantics of
natural language (see [5] for a survey).

The study of second-order generalized quantifiers is a relatively new and unexplored area in finite model theory. On
the other hand, second-order logic (SO) and its many fragments have been studied extensively starting from Fagin’s char-
acterization of NP in terms of existential second-order logic [6]. Second-order generalized quantifiers were first studied in
the context of finite structures by Burtschick and Vollmer [7]. Shortly after, Andersson [8] studied the expressive power
of families of second-order generalized quantifiers determined by the syntactic types of quantifiers. In [9–11] Kontinen
studied definability questions of second-order generalized quantifiers. In the case of first-order quantifiers, definability
of a quantifier Q in a logic L means that the class of structures, used to interpret Q , is axiomatizable in L. In the
second-order case, the analogous concept of definability was formulated in [9,10]. In this article, we give a computa-
tionally motivated characterization for the notion of definability of second-order generalized quantifiers. Burtschick and
Vollmer [7] noticed that second-order generalized quantifiers can be used to logically characterize complexity classes de-
fined in terms of so-called Leaf Languages. The leaf languages approach in computational complexity theory, introduced
by Bovet, Crescenzi, and Silvestri [12], is a unifying approach to define complexity classes. The central idea behind this
approach is to generalize the conditions under which, e.g., a Turing machine or an automaton accepts its input. Many
complexity classes can be defined in this context in terms of suitable leaf languages. On the other hand, a complexity
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class defined in terms of a leaf language B can be under certain conditions characterized logically by a logic of the
form:

QB FO,

where QB is a second-order generalized quantifier corresponding to the language B . In the context of leaf languages, poly-
nomial time non-deterministic Turing machines can be sometimes replaced by non-deterministic finite automata (so-called
finite leaf automata) without a significant decrease in complexity [13]. Galota and Vollmer [14] showed that complex-
ity classes defined by finite leaf automata can be logically characterized in terms of monadic second-order generalized
quantifiers. This result nicely extends the well known [15–17] characterization of regular languages in terms of monadic
second-order logic (MSO).

The definability theory of second-order generalized quantifiers has some similarities and differences compared to that
of first-order generalized quantifiers. For example, it was observed in [9] that the binary second-order existential quantifier
cannot be defined in terms of any monadic second-order generalized quantifiers. This result is in contrast with the fact
(a corollary of a result of Andersson [8]) that all classes of finite first-order structures are already definable in terms of
monadic second-order generalized quantifiers.

In this paper we prove a general result characterizing the question when a quantifier Q is definable in MSO(Q′,+),
where + denotes the built-in addition relation. We assume the built-in addition in order to unleash the expressive power
embodied by MSO. Recall that, while MSO corresponds to regular languages over strings, MSO(+) corresponds to the linear
fragment of the polynomial hierarchy (LINH) on strings [18]. Some of our results can be generalized to the case where
the base logic is full second-order logic instead of MSO(+). Our characterization is based on the idea connecting oracle
separation results with lower bound results for small constant depth circuits, see e.g., [19–23]. We show that a second-order
generalized quantifier Q1 is definable in the logic MSO(Q2,+) iff for certain first-order encodings Q�

i of Qi , Q�
1 is definable

in FO(Q�
2,+,×). It is worth noting that the latter condition implies that Q�

1 is AC0 (Turing) reducible to Q�
2. We use our

characterization to show new definability and non-definability results for second-order generalized quantifiers. In particular,
we show that the monadic second-order majority quantifier Most1 is not definable in second-order logic. This answers
the question left open in [24] (see also [25]), where second-order generalized quantifiers were used to model collective
quantification in natural language, for example:

1. Most girls gathered.
2. All soldiers surrounded the Alamo.

The common strategy in formalizing collective quantification has been to define the meanings of collective determiners,
quantifying over collections, using certain type-shifting operations. These operations, i.e., lifts, define the collective interpre-
tations of determiners systematically from the standard meanings of quantifiers (see, e.g., [26,27]). In [24] we show that
all these lifts are definable in second-order logic. In this paper we prove that some collective quantifiers (second-order
generalized quantifiers) are not definable in second-order logic. Therefore, there is no second-order definable lift expressing
their collective meaning. This is clearly a restriction of the type-shifting approach. One possible alternative would be to use
second-order generalized quantifiers in the study of collective semantics, as we already proposed in [24]. However, as it
follows from this paper the computational complexity of such approach is excessive and hence it may not be a plausible
model of collective quantification in natural language (see [28–30] for a discussion of computational restrictions in natu-
ral language semantics). Hence, it may be wise to turn in the direction of another well-known way of studying collective
quantification in natural language, the many-sorted (algebraic) tradition (see [31]). Another linguistic interpretation of our
results might be that computational complexity restricts the expressive power of everyday language (see [32]). Namely,
even though natural language can in principle realize collective quantifiers non-definable in second-order logic, its everyday
fragment does not contain such constructions due to their high complexity.

2. Preliminaries

In this article all structures are assumed to be finite. The universe of a structure A is denoted by A. Without loss of
generality, we may assume that A is always of the form {0, . . . ,m} for some m ∈ N. For a logic L, the set of τ -formulas of
L is denoted by L[τ ]. If φ is a τ -sentence, then the class of τ -models of φ is denoted by Mod(φ). A class K of τ -models
is said to be axiomatizable in a logic L, if K = Mod(φ) for some sentence φ ∈ L[τ ]. For logics L and L′ , we write L� L′ ,
if for every τ and every sentence φ ∈ L[τ ] there is a sentence ψ ∈ L′[τ ] such that Mod(φ) = Mod(ψ). The set of natural
numbers is denoted by N and N∗ denotes the set N \ {0}.

Sometimes we assume that our structures (and logics) are equipped with auxiliary built-in relations. In addition to the
built-in ordering <, which is interpreted naturally, we also use the ternary relations + and ×. The relations + and × are
defined as

+(i, j,k) ⇔ i + j = k,

×(i, j,k) ⇔ i × j = k.
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