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We take a new look at the multicut problem in trees, denoted multicut on trees

henceforth, through the eyes of the vertex cover problem. This connection, together with
other techniques that we develop, allows us to give an upper bound of O (k3) on the
kernel size for multicut on trees, significantly improving the O (k6) upper bound given by
Bousquet et al. We exploit this connection further to present a parameterized algorithm
for multicut on trees that runs in time O ∗(ρk), where ρ = (

√
5 + 1)/2 ≈ 1.618. This

improves the previous (time) upper bound of O ∗(2k), given by Guo and Niedermeier, for
the problem.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

In the multicut on trees problem we are given a tree T , a set of requests R ⊆ V (T ) × V (T ) between pairs of vertices
in T , and a nonnegative integer k, and we are asked to decide if we can remove at most k edges from the tree to disconnect
all the requests in R (i.e., every path in the tree that corresponds to a request in R contains at least one of the removed
edges).

The multicut on trees problem has applications in networking [5]. The problem is known to be NP-hard, and its
optimization version can be approximated to within ratio 2 [9]. We consider the multicut on trees problem from the pa-
rameterized complexity perspective. We mention that the parameterized complexity of several graph separation problems,
including variants of the multicut on trees problem, was studied with respect to different parameters by Marx in [11]. Guo
and Niedermeier [10] showed that the multicut on trees problem is fixed-parameter tractable by giving an O ∗(2k) time
algorithm for the problem. (The asymptotic notation O ∗( f (k)) denotes time complexity of the form f (k) · p(n), where p(n)

is a polynomial in the input length n.) They also showed that multicut on trees has an exponential-size kernel. Recently,
Bousquet, Daligault, Thomassé, and Yeo, improved the upper bound on the kernel size for multicut on trees to O (k6) [3].

In this paper we take a new look at multicut on trees through the eyes of the vertex cover problem. This connection
allows us to give an upper bound of O (k3) on the kernel size for multicut on trees, significantly improving the previous
O (k6) upper bound given by Bousquet et al. [3]. We exploit this connection further to give a parameterized algorithm

✩ A preliminary version of this paper appears in the proceedings of WADS 2011, Lecture Notes in Comput. Sci., vol. 6844, 2011, pp. 219–230.
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for multicut on trees that runs in O ∗(ρk) time, where ρ = (
√

5 + 1)/2 ≈ 1.618 (golden ratio) is the positive root of the
polynomial x2 − x − 1, thus improving the O ∗(2k) time algorithm, given by Guo and Niedermeier [10].

To obtain the O (k3) upper bound on the kernel size, we introduce a novel approach that relies on a grouping of the
vertices in the tree. This grouping allows us to derive tighter upper bounds on the number of vertices in the tree after
applying some new reduction rules that we introduce in this paper. Some of the reduction rules we apply exploit a connec-
tion between vertex cover and multicut on trees that is observed in this paper. The novel approach can be summarized as
follows. We first group the vertices in the tree into O (k) groups. We then introduce an ordering that orders the leaves in a
group with respect to every other group. This ordering allows us to introduce a set of reduction rules that limits the number
of leaves in a group that have requests to the vertices in another group. At the core of this set of reduction rule is a rule
that utilizes the crown kernelization algorithm for vertex cover [1]. All the above allows us to upper bound the number of
leaves in the reduced instance by O (k2), improving the O (k4) upper bound on the number of leaves obtained in [3]. Finally,
we show that the size of the reduced instance is at most the number of leaves in the reduced instance multiplied by a
linear factor of k, thus yielding an upper bound of O (k3) on the size of the kernel.

To obtain the O ∗(((
√

5+1)/2)k) time algorithm, we first establish new structural connections between multicut on trees

and vertex cover that allow us to simplify the instance of multicut on trees. We then exploit the simplified structure of
the resulting instance to present a simple search-tree algorithm for multicut on trees that runs in time O ∗(((

√
5 + 1)/2)k).

We note that, even though some connection between multicut on trees and vertex cover was observed in [9,10], this
connection was not developed or utilized in kernelization algorithms, nor in parameterized algorithms for multicut on

trees.
We mention that, very recently, the multicut problem on general graphs was shown to be fixed-parameter tractable

independently by Bousquet, Daligault, and Thomassé [2], and by Marx and Razgon [12], thus answering an outstanding
open problem in parameterized complexity theory.

2. Preliminaries

We assume familiarity with basic graph theory and parameterized complexity notation and terminology. For more infor-
mation, we refer the reader to [6,8,13,14].

2.1. Graphs, forests, trees, and caterpillars

For a graph H we denote by V (H) and E(H) the set of vertices and edges of H , respectively; n(H) = |V (H)| and
e(H) = |E(H)| are the number of vertices and edges in H . For a set of vertices S ⊆ V (H), we denote by H[S] the subgraph
of H induced by the vertices in S . For a vertex v ∈ H , H − v denotes H[V (H) \ {v}], and for a subset of vertices S ⊆ V (H),
H − S denotes H[V (H) \ S]. By removing a subgraph H ′ of H we mean removing V (H ′) from H to obtain H − V (H ′). Two
vertices u and v in H are said to be adjacent or neighbors if uv ∈ E(H). For two vertices u, v ∈ V (H), we denote by H − uv
the graph (V (H), E(H) \ {uv}), and by H + uv the simple graph (V (H), E(H) ∪ {uv}). By removing an edge uv from H we
mean setting H = H − uv . For a subset of edges E ′ ⊆ E(H), we denote by H − E ′ the graph (V (H), E(H) \ E ′). For a vertex
v ∈ H , N(v) denotes the set of neighbors of v in H . The degree of a vertex v in H , denoted degH (v), is |N(v)|. The degree
of H , denoted �(H), is �(H) = max{degH (v): v ∈ H}. The length of a path in a graph H is the number of edges in it.
A matching in a graph is a set of edges such that no two edges in the set share an endpoint. A vertex cover for a graph H
is a set of vertices such that each edge in H is incident to at least one vertex in this set. A vertex cover for H is minimum
if its cardinality is minimum among all vertex covers of H ; we denote by τ (H) the cardinality/size of a minimum vertex
cover of H .

A tree is a connected acyclic graph. A leaf in a tree is a vertex of degree at most 1. A nonleaf vertex in a tree is called
an internal vertex. The internal degree of a vertex v in a tree is the number of nonleaf vertices in N(v). For two vertices u
and v , the distance between u and v in T , denoted distT (u, v), is the length of the unique path between u and v in T . A leaf
x in a tree is said to be attached to vertex u if u is the unique neighbor of x in the tree. A caterpillar is a tree consisting of
a path with leaves attached to the vertices on the path. A forest is a collection of disjoint trees.

Let T be a tree with root r. For a vertex u 	= r in V (T ), we denote by π(u) the parent of u in T . A sibling of u is a child
v 	= u of π(u) (if exists), an uncle of u is a sibling of π(u), and a cousin of u is a child of an uncle of u. A vertex v is a
nephew of a vertex u if u is an uncle of v . For a vertex u ∈ V (T ), Tu denotes the subtree of T rooted at u. The children
of a vertex u in V (T ), denoted children(u), are the vertices in N(u) if u = r, and in N(u) − π(u) if u 	= r. A vertex u is a
grandparent of a vertex v if π(v) is a child of u. A vertex v is a grandchild of a vertex u if u is a grandparent of v .

2.2. Parameterized complexity

A parameterized problem is a set of instances of the form (x,k), where x ∈ Σ∗ for a finite alphabet set Σ , and k is a
non-negative integer called the parameter. A parameterized problem Q is fixed parameter tractable, or simply FPT, if there
exists an algorithm that on input (x,k) decides if (x,k) is a yes-instance of Q in time f (k)nO (1) , where f is a computable
function independent of n = |x|. A parameterized problem Q is kernelizable if there exists a polynomial-time reduction that
maps an instance (x,k) of Q to another instance (x′,k′) of Q such that: (1) |x′| � g(k) for some computable function g ,
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