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a  b  s  t  r  a  c  t

This paper  propose  a new  algorithm,  termed  as  LPTWSVM,  for binary  classification  problem  by  seek-
ing two  nonparallel  hyperplanes  which  is an  improved  method  for TWSVM.  We improve  the recently
proposed  ITSVM  and  develop  Generalized  ITSVM.  A linear  function  is  chosen  in  the  object  function  of
Generalized  ITSVM  which  leads  to the  primal  problems  of  LPTWSVM.  Comparing  with  TWSVM,  a 1-norm
regularization  term  is  introduced  to  the  objective  function  to implement  structural  risk  minimization  and
the  quadratic  programming  problems  are  changed  to linear  programming  problems  which  can  be  solved
fast  and  easily.  Then  we  do not  need  to compute  the  large  inverse  matrices  or use  any  optimization  trick
in  solving  our  linear  programs  and  the  dual  problems  are  unnecessary  in  the  paper.  We  can  introduce
kernel  function  directly  into  nonlinear  case  which  overcome  the  serious  drawback  of TWSVM.  Also,  we
extend  LPTWSVM  to  multi-class  classification  problem  and get  a new  model  MLPTWSVM.  MLPTWSVM
constructs  M hyperplanes  to make  that  the  m-th hyperplane  is far from  the  m-th  class  and  close  to the
rest  classes  as much  as  possible  which  follow  the idea  of MBSVM.  The  numerical  experiments  verify  that
our new  algorithms  are  very  effective.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Support vector machines (SVMs), as machine learning methods
which were constructed on the VC-dimension theory and the prin-
ciple of structural risk minimization, were proposed by Corinna
Cortes and Vapnik in 1995 [1–3]. With the evolution of SVMs, they
have shown much advantages in classification with small samples,
nonlinear classification and high dimensional pattern recognition
and also they can be applied in solving other machine learn-
ing problems [4–10]. The standard support vector classification
attempts to minimize generalization error by maximizing the mar-
gin between two parallel hyperplanes, which results in dealing
with an optimization task involving the minimization of a con-
vex quadratic function. But some classifiers based on nonparallel
hyperplanes were proposed recently. The generalized eigenvalue
proximal support vector machine (GEPSVM) and twin support vec-
tor machine (TWSVM) are two typical classification methods and
are also very popular. TWSVM seeks two nonparallel hyperplanes
and make each hyperplane close to one class and far from the other
as much as possible. However, the structural risk was not consid-
ered in TWSVM which may  affect the computational efficiency and
accuracy. Based on TWSVM, TBSVM and ITSVM was  proposed in
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[11,12] which introduces a regularization term into the objective
function and their experiments perform better than TWSVM. The
main contribution of the twin bounded support vector machine
(TBSVM) is that the principle of structural risk minimization is
implemented by adding the regularization term in the primal prob-
lems. And the advantages of the improved twin support vector
machine (ITSVM) are that it can apply kernel trick directly in the
nonlinear case and it does not need to compute inverse matrices.
Similar as SVM, a least squares version of TWSVM (LSTWSVM) has
been presented which only require to solve two systems of linear
equations [13]. LSTWSVM can get comparable generalization per-
formance to TWSVM. Tian etc. proposed NPSVM to make TWSVM
sparse by replace the quadratic loss function with �−insensitive
loss function [14]. But the above mentioned improved algorithms
all have their own  drawbacks. TBSVM and LSTWSVM cannot intro-
duce kernel function into linear case directly and LSTWSVM does
not consider minimizing structural risk. ITSVM and NPSVM need
to solve quadratic programs which need many complex tricks.
TWSVM have been studied extensively [15–20].

Since multi-class classification problem is a natural extension
of the binary classification problem, “One versus the rest” and “One
versus one” [21,22] which construct a series of quadratic programs
have been proposed and become two  typical methods in solving
multi-class classification problems. Recently, MBSVM [23] has
been presented for multi-class classification inspired by the idea
of TWSVM. For M(M ≥ 3) class classification, MBSVM seeks for M
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hyperplanes such that each hyperplane is proximal to M − 1 class
and as far as possible from the rest one class. Because the decision
criterion of MBSVM is the farthest distance of the test point to the
hyperplanes, MBSVM have much lower computational complexity
and can be solved faster than “One versus the rest” and “One versus
one”. However, MBSVM has two serious drawbacks which may
affect its predict accuracy. It has to compute the inverse matrices
though solving optimization problems which can lead to “Curse of
Dimensionality” when the sample size is very large. Besides, it has
not taken into account the confidence interval of structural risk
so that its learning ability and generalization ability cannot meet
requirements.

In this paper, we propose a novel approach to classification
problem which involves two nonparallel hyperplanes in two  linear
optimization problems, termed as LPTWSVM, for binary classifica-
tion. Since ITSVM is a successful method as an improved version
of TWSVM, we develop Generalized ITSVM which follows the idea
in [24]. Quadratic programs are time-consuming and need to be
solved by so many optimization tricks. In comparison, linear pro-
grams are very popular because the formulations are nice which can
be computed simpler [25]. So we consider using linear program-
ming to obtain the best hyperplane parameters. LPTWSVM replaces
the abstract function in the objective function of Generalized ITSVM
with 1-norm terms and then we convert them to linear programs
which can be solved easily and quickly and inherits the advantage of
ITSVM. We  can implement the principle of structural minimization
and avoid computing inverse matrices. Also kernel function can be
introduced to nonlinear case directly as the standard SVMs usually
do. We  also make an extension for LPTWSVM and solve multi-class
classification at last.

The paper is organized as follows: Section 2 briefly introduces
two algorithms, the original TWSVM and ITSVM; Section 3 proposes
our new method LPTWSVM; we extended LPTWSVM to multi-class
classification in Section 4; numerical experiments are implemented
in Section 5 and concluding remarks are summarized in Section 6.

2. Background

In this section, we introduce the original TWSVM and its
improved algorithm ITSVM.

2.1. TWSVM

Consider the binary classification problem with the training set

T = {(x1, +1), · · ·,  (xp, +1), (xp+1, −1), · · ·,  (xp+q, −1)}, (2.1)

where xi ∈ Rn, i = 1, · · · , p + q. Let A = (x1, · · · , xp)T ∈ Rp×n, B = (xp+1,
· · · , xp+q)T ∈ Rq×n, and l = p + q.

TWSVM constructs the following primal problems

min
w+,b+,�−

1
2

(Aw+ + e+b+)T(Aw+ + e+b+) + c1eT
−�−, (2.2)

s.t. − (Bw+ + e−b+) + �− ≥ e−, �− ≥ 0, (2.3)

and

min
w−,b−,�+

1
2

(Bw− + e−b−)T(Bw− + e−b−) + c2eT
+�+, (2.4)

s.t.(Aw− + e+b−) + �+ ≥ e+, �+ ≥ 0, (2.5)

where ci, i=1,2,3,4 are the penalty parameters, e+ and e− are
vectors of ones, �+ and �− are slack vectors, e+, �+ ∈ Rp, e−, �− ∈ Rq.
The decision function is denoted by

Class = arg min
k=−,+

|(wk · x) + bk| (2.6)

where | · | is the absolute value.

2.2. ITSVM

ITSVM is the abbreviation of improved twin support vector
machine which changes the form of TWSVM and construct the
following primal problems in linear case

min
w+,b+,�+,�−

1
2

c3(||w+||2 + b2
+) + 1

2
�T

+�+ + c1eT
−�−, (2.7)

s.t.Aw+ + e+b+ = �+, (2.8)

−(Bw+ + e−b+) + �− ≥ e−, �− ≥ 0, (2.9)

and

min
w−,b−,�−,�+

1
2

c4(||w−||2 + b2
−) + 1

2
�T

−�− + c2eT
+�+, (2.10)

s.t.Bw− + e−b− = �−, (2.11)

(Aw− + e+b−) + �+ ≥ e+, �+ ≥ 0, (2.12)

where ci, i=1,2,3,4 are the penalty parameters, e+ and e− are
vectors of ones, �+ and �− are slack vectors, e+, �+, �+ ∈ Rp, e−, �−,
�− ∈ Rq.

The following dual problems are considered to be solved

max
�,˛

− 1
2

(�T ˛T)Q̂ (�T ˛T)
T + c3eT

−˛, (2.13)

s.t.0 ≤  ̨ ≤ c1e−, (2.14)

and

max
�,�

− 1
2

(�T �T)Q̃ (�T �T)
T + c4eT

+�, (2.15)

s.t.0 ≤ � ≤ c2e+, (2.16)

where

Q̂ =
(

AAT + c3I+ ABT

ABT BBT

)
+ E, (2.17)

Q̃ =
(

BBT + c4I− BAT

BAT AAT

)
+ E, (2.18)

and I+ is the p × p identity matrix, I− is the q × q identity matrix, E is
the l × l matrix with all entries equal to one. Thus a new point x ∈ Rn

is predicted to the class by (2.6) where

w+ = − 1
c3

(AT� + BT˛), b+ = − 1
c3

(eT
+� + eT

−˛), (2.19)

w− = − 1
c4

(BT� − AT�), b− = − 1
c4

(eT
−� − eT

+�), (2.20)

For the nonlinear case, after introducing the kernel function, the
two corresponding problems in the Hilbert space H are

min
w+,b+,�+,�−

1
2

c3(||w+||2 + b2
+) + 1

2
�T

+�+ + c1eT
−�−, (2.21)

s.t.�(A)w+ + e+b+ = �+, (2.22)

−(�(B)w+ + e−b+) + �− ≥ e−, �− ≥ 0, (2.23)

and

min
w−,b−,�−,�+

1
2

c4(||w−||2 + b2
−) + 1

2
�T

−�− + c2eT
+�+, (2.24)

s.t.�(B)w− + e−b− = �−, (2.25)

(�(A)w− + e+b−) + �+ ≥ e+, �+ ≥ 0, (2.26)

Their dual problems are constructed and can be solved directly.
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