
Journal of Computational Science 10 (2015) 299–310

Contents lists available at ScienceDirect

Journal of Computational Science

journa l h om epage: www.elsev ier .com/ locate / jocs

Auto-tuning techniques for linear algebra routines on hybrid
platforms

Gregorio Bernabéa, Javier Cuencaa, Luis-Pedro Garcíab, Domingo Giméneza,∗

a University of Murcia, Spain
b Technical University of Cartagena, Spain

a r t i c l e i n f o

Article history:
Received 10 October 2014
Received in revised form 25 March 2015
Accepted 22 April 2015
Available online 25 April 2015

Keywords:
Auto-tuning
Models of the execution time
Parallel linear algebra
Hybrid CPU + GPU computing
Intel Xeon Phi

a b s t r a c t

This work analyses two techniques for auto-tuning linear algebra routines for hybrid combinations of
multicore CPU and manycore coprocessors (single or multiple GPUs and MIC). The first technique is based
on basic models of the execution time of the routines, whereas the second one manages only empirical
information obtained during the installation of the routines. The final goal in both cases is to obtain a
balanced assignation of the work to the computing components in the system. The study is carried out
with a basic kernel (matrix–matrix multiplication) and a higher level routine (LU factorization) which
uses the auto-tuned basic routine. Satisfactory results are obtained, with experimental execution times
close to the lowest experimentally achievable.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In most scientific and engineering problems, computations are
carried out with basic BLAS type matrix routines. Level 3 BLAS col-
lects all the matrix–matrix operations, which are the set of the most
computational intensive BLAS routines. Therefore, the improve-
ment in the performance of scientific codes is achieved in many
cases by the efficient use of these routines.

Efforts have been devoted to the optimization of linear alge-
bra routines in computational systems of different characteristics
[1–5]. The decisions to take depend on the type of the computa-
tional system for which the routines are developed. For example,
it is necessary to adapt the original ideas developed for homoge-
neous parallel systems to heterogeneous or dynamic systems [6–9],
and the omnipresence today of CPU + coprocessor systems makes
the adaptation of previous auto-tuning techniques to these systems
compulsory. This paper studies empirical auto-tuning techniques
to achieve optimum load balance between a multicore CPU and
different possible manycore coprocessors (single or multiple GPUs
and MIC [10]) when they perform linear algebra routines. The CPU
part can be carried out with a multithread BLAS library. Many BLAS
implementations exist, for multicore (vendors implementations:
Intel MKL [11], IBM ESSL [12], etc.; or free implementations: ATLAS
[5], Goto BLAS [13], etc.) and for GPUs (CULA Tools [14], CUBLAS

∗ Corresponding author. Tel.: +34 606860619.

[15] and MAGMA [16–18]). The CPU and GPU implementations
used here are MKL and CUBLAS, but the same techniques can be
applied with all other basic libraries. Our study focuses on these
two libraries, although preliminary experiments carried out with
others provided similar performance results.

In previous works we have considered two different auto-tuning
methods to obtain a balanced distribution of the tasks between
the computing resources according to the machine characteristics:
an experimental method (guided search) and a mixed theoretical-
experimental method (empirical modeling). The guided search
method was analyzed in [19] and the empirical modeling in [20],
in both cases for NUMA platforms. Their extension to CPU + GPU
platforms is described in [21] (guided search) and [22] (empir-
ical modeling). In this work, the two methods are adapted to
hybrid platforms composed of a multicore CPU plus different
co-processors: a single GPU, multiple GPUs or an Intel Xeon
Phi.

The rest of the paper is organized as follows. Section 2 comments
on some adaptations of linear algebra software to GPU and com-
binations of CPU + GPUs and CPU + MIC. Section 3 introduces the
two auto-tuning methodologies and explains their uses for a basic
kernel (matrix–matrix multiplication) in a multicore+GPU system.
The experimental results for this kernel are shown in Section 4.
Section 5 describes how to use the basic auto-tuned kernel in
a LU factorization in order to improve this higher-level routine.
The experimental results with the LU factorization are shown in
Section 6. The extension of the methodology to other types of hybrid

http://dx.doi.org/10.1016/j.jocs.2015.04.032
1877-7503/© 2015 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.jocs.2015.04.032
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jocs.2015.04.032&domain=pdf
dx.doi.org/10.1016/j.jocs.2015.04.032

300 G. Bernabé et al. / Journal of Computational Science 10 (2015) 299–310

systems (multicore+multiGPU and multicore+MIC) is discussed in
Section 7. Finally, Section 8 concludes the paper and outlines pos-
sible research directions.

2. Linear algebra on hybrid platforms

Due to the omnipresence of multicore systems with GPU accel-
erators, efforts are being devoted to the development of software
for these systems, and especially to the design of linear algebra
routines which manage the heterogeneity of the whole system to
obtain the maximum achievable performance. In [23] a strategy
is presented to perform matrix–matrix multiplications on hybrid
NVIDIA GPU systems. The basic idea is to carry out a matrix mul-
tiplication A = BC by splitting the data of matrices B and C between
the CPU and a single GPU, and performing the operations simulta-
neously on both devices. The final result is obtained by aggregation
of the results independently obtained in CPU and GPU. A similar
approach is used in the core numerical kernels included as part
of the NVIDIA LINPACK TOP 500 benchmark suite [24] to rank the
fastest heterogeneous supercomputers in the world. The PHIGEMM
[25] library uses a workload distribution based on a pre-defined
split factor and the latest capabilities of CUDA to efficiently control
asynchronous data transfer and overlapping multi-device com-
putations. Users must define this split factor manually according
to the ratio of computational power of the CPU and the GPU. In
[26] a hybrid programming model combining MPI, OpenMP and
streaming computing is described. The LAPACK task, thread and
data parallelisms are exploited. The main idea to optimize the load
distribution across the CPUs and GPUs is to use a two-level adaptive
method to measure the relative performance of GPUs and CPUs at
runtime. Additionally, a software pipelining technique is used to
bypass the low-bandwidth communication between CPU and GPU.
[27] proposes a variable block size auto-tunig scheme on CPU–GPU
hybrid systems for the QR factorization in MAGMA. The approach
is to fit the CPU and GPU cost via two independent regression mod-
els and to define a cost objective function to balance the workloads
between CPU and GPU. Moreover, various auto-tuning projects ori-
ented to mutiple GPUs can be found in the literature: The StarPU
platform [28] provides numerical kernel designers a way to gener-
ate parallel tasks over heterogeneous hardware with multiple cores
and GPUs. The proposal of [29] consists of a task-based fine-grained
execution scheme that can dynamically balance workload on indi-
vidual GPUs and among different GPUs located in a single node.
In order to do that, a task queue scheme is implemented between
the host and the different devices on the machine. Finally, [30] is
a proposal for a polyalgorithmic autotuner that combines different
algorithmic techniques, determining empirically how to map por-
tions of programs across all types of resources (CPU and GPUs) in a
single node.

On the other hand, the launch of the Intel Many Integrated Core
architecture (Intel MIC architecture) [10] combining many Intel
CPU cores onto a single chip gives developers a key advantage:
they run on standard, existing programming tools and methods.
The same program source code written for Intel MIC products can
be compiled and run on a standard Intel Xeon processor. Intel says
its coprocessors have a few advantages over GPGPUs: they operate
independently of CPUs and they do not require special code to pro-
gram. Several auto-tuning projects are under way for this platform,
beginning with the Intel Math Kernel Library (MKL) [11], which
when their functions are called on the Intel MIC architecture make
best use of SIMD parallelism. Another auto-tuned library for this
platform is MAGMA MIC [31], which uses a hybridization method-
ology, where the algorithms are split into computational tasks of
varying granularity and, then, they are properly scheduled over the
heterogeneous hardware.

Fig. 1. Distribution of the computation of a matrix multiplication on a CPU + GPU
system. The blue portion (left part) is performed in the GPU and the orange portion
(right part) in the CPU. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of the article.)

In [32] an auto-tuning method for the LU factorization is
described. In this proposal, the initial amount of work to assign
to both the CPU and GPU is determined before execution by means
of an analytical model of the execution time, and the workload is
dynamically balanced during the execution. In our proposal we use
a static approach to decide the split of the matrices between the
components of the heterogeneous computing system. The dynamic
selection is discarded because it would suppose high overheads
when the matrix multiplication is used inside higher level codes.
Two techniques previously used for tuning linear algebra routi-
nes in NUMA systems according to the machine’s characteristics
can be applied for this new computing system: an experimen-
tal method (guided search) and a mixed theoretical-experimental
method (empirical modeling). These techniques are used to tune a
matrix–matrix multiplication kernel which is then included inside
a matrix factorization by reusing the tuned information obtained
for the kernel to improve the higher level routine.

3. Auto-tuning a multi-device matrix multiplication

The matrix multiplication is computed simultaneously on
both GPU and CPU cores. The multiplication C = ˛AB + ˇC can be
expressed as C = ˛(AB1 + AB2) + ˇ(C1 + C2), and AB1 + ˇC1 can be per-
formed in the GPU and AB2 + ˇC2 in the CPU1 (Fig. 1). In the
experiments, the CUBLAS library (cublasDgemm routine) is used for
the computation in the GPU, and the MKL library (dgemm routine)
in the CPU.

An optimum split of the matrix would keep the time consumed
by the GPU and CPU balanced [23,33]. The multi-device (GPU and
CPU) computations are overlapped and the data transfers between
GPU and CPU are performed asynchronously in order to achieve the
maximum performance. To reduce the data transfer time between

1 Preliminary implementations with different workload splittings of the dgemm
were considered, also using CUDA streams in several ways for different
communication-computation overlapping situations. Finally, a simple splitting
scheme has been considered for this work in order to pay attention to the self
optimization process more than the algorithm design.

Download English Version:

https://daneshyari.com/en/article/430359

Download Persian Version:

https://daneshyari.com/article/430359

Daneshyari.com

https://daneshyari.com/en/article/430359
https://daneshyari.com/article/430359
https://daneshyari.com

