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a  b  s  t r  a  c  t

Single-molecule  tracking  data  near solid  surfaces  contain  information  on diffusion  that  is potentially
affected  by  adsorption.  However,  molecular  adsorption  can  occur  in  an intermittent  manner,  and  the
overall  phenomenon  is  regarded  as  slower  yet  normal  diffusion  if  the  time  scale  of  each  adsorption
event  is sufficiently  shorter  than  the  interval  of data  acquisition.  We  compare  simple  numerical  model
systems  that  vary  in  the  time  scale  of  adsorption  event  while  sharing  the  same  diffusion  coefficient,  and
show that  the  shape  of  the  displacement  distribution  depends  on  the  time  resolution.  We  also  evaluate
the  characteristics  by statistical  quantities  related  to the  large  deviation  principle.  We  show  that  the
characteristic  time  scale  of the intermittent  phenomena  is  elucidated  when  the  time  resolution  of  the
observation  is sufficiently  fine  and  the  amount  of  data  is sufficiently  large  to evaluate  the  intermittency.

©  2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Diffusion of small objects such as biomolecules in fluid near a
solid surface is known to differ from the bulk diffusion [1]. Brown-
ian motion of single-stranded DNA molecules labelled with marker
molecules has been experimentally observed by total internal
reflection fluorescence microscopy (TIRF) technique [2,3]. Diffusion
coefficients near the substrate surfaces were substantially smaller
than that expected from bulk consideration [4]. Surface effects such
as hydrodynamic wall effects [5–10] and the molecular behaviour
of water in the vicinity of the solid surface [11] are thought to
contribute to the slow down of diffusion. Furthermore, adsorp-
tive effects may  also contribute. Diffusion and adsorption of DNA
in solution to the substrate surface has been studied since it is
important for the application of self-assembly to the engineering
[12–14].

Intuitively, the effect of adsorption of molecules in solution to a
solid wall is expected to lead to negligible displacement. However,
there can also be the case that the adsorption takes place for short
duration compared to the time resolution of observation by high-
speed camera mounted onto microscope system. If the duration of
adsorption is short, it is usually regarded as negligible. However,
the slow down of the diffusion by this adsorption event can be
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noticeable if the frequency of the event is sufficiently high. Thus,
the adsorptive effect of solid surface on the Brownian motion of
molecules is not intrinsically of all-or-nothing nature. In this arti-
cle, we  focus on the intermittency of the adsorption phenomena.
We consider simple numerical model to represent the diffusion
accompanied by intermittent adsorption events, and show how the
time scale of adsorbed and diffusing states affects the displacement
at finite frame intervals of observation, while sharing the same
diffusion coefficients.

2. Computational model and method

2.1. Model of Brownian motion with intermittent adsorption

We define a one-dimensional model of diffusion combined with
intermittent adsorption onto a solid surface. The molecule of inter-
est is either in solution or adsorbed on a flat solid surface. Brownian
motion in the direction parallel to the solid surface is discussed. The
molecule undergoes a Wiener process in the “diffusing state”:

�x  =
√

2Dp�t  · �, (1)

where �x, Dp, �t  and � are the displacement, diffusion coeffi-
cient within the diffusing state, time increment of the dynamics
and Gaussian random variable with zero mean and unit variance,
respectively. On the other hand, the solute molecule does not
undergo observable displacement in the “adsorbed state”:

�x  = 0. (2)
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Fig. 1. Schematic graph indicating the time evolution of the position. Molecule of
interest is either in the adsorbed or diffusing states, and the state changes stochas-
tically. The duration of a diffusing state is exponentially distributed but the mean
duration is �, which is the same as a continuous adsorbed state. All of the parameters
in  the figure are displayed with superscript “d”, indicating that they are quantities
with dimension. �t  is the time increment to generate the trajectory. The frame
interval Tframe is defined to be Tframe = 102�t, and three cases � = 10�t,  102�t, and
103�t  of physical systems are considered.

The duration of the diffusing state tdiffuse between adsorbed
states is defined to be exponentially distributed based on the prob-
ability density:

pExp(tdiffuse) = 1
�

exp
(

− tdiffuse

�

)
, (3)

where � is the mean duration of a diffusing state. The duration of
a continuous adsorbed state is defined to be constant. It should
be noted that we place emphasis on the simplicity here in order
to make the essence clear. We  do not intend to uncover all of the
significant factors for the slow down of diffusion of a molecule in
solution in the vicinity of solid surface, but we focus solely on the
influence of time scale of intermittent adsorption on the time-series
data of displacements that is captured by finite frame intervals.

We  define the typical time scale T = 10−2 s in order to use
nondimensionalized quantities. We  consider the frame interval
of Tframe = 1. The model definition with relevant time scales is
schematically shown in Fig. 1. The time step of the dynamics itself is
defined as �t  = 10−2. The total number of steps to generate the tra-
jectory is ntotal = 106. We  conduct two series of simulations. In the
first series, the duration of a continuous adsorbed state is defined
to be the same as the mean duration � of the diffusing state. In
other words, the time fraction R of the adsorbed state in the overall
dynamics is 0.5 regardless of � after sufficient duration of sampling.
We keep R fixed, and we  consider three physical systems; � = 0.1,
1, and 10. We  study how the difference of � is reflected on the
displacement characteristics at the resolution of Tframe. The unit of
length scale is defined as L = 10−6 m,  and the nondimensional diffu-
sion coefficient during the diffusing state is defined as Dp = 1. In the
second series of simulations, we fix � and vary R. We  assign � = 1,
and R = 0.1, 0.2, and 0.5. In other words, we vary tdiffuse. Further-
more, we vary Dp in order to keep the overall diffusion coefficient
D to be a constant value regardless of the variation in R. The specific
values are Dp = 5/9 and 5/8 for the cases of R = 0.1 and 0.2, which lead
to D = 1/2 regardless of R. In summary, we examine the influence of
� in the first series of simulations, and R in the second series. The
overall diffusion coefficient is always D = 1/2.

2.2. Data analysis based on the large deviation principle

The rate function S(u) in the large deviation principle is defined
as follows:

S(u) = − lim
Tspan→∞

1
Tspan

ln P(ū(Tspan) ∈ [u, u + du]), (4)

where ū(Tspan) is the finite-time mean of the stochastic variable of
interest for the period of Tspan, and P is the probability of ū(Tspan)
taking the values between u and u + du.  The rate function indicates
how fast the probability of ū(Tspan) taking the specific values of u
other than the expected values converges to zero as the number
of samples Tspan are increased. In case of Gaussian random vari-
able, the rate function is known to take parabolic shape [15]. As we
cannot have infinite amount of data, we consider a kind of approx-
imation. First, we  consider the absolute value Uj(i) of displacement
�x  per time step �t  by splitting the ntotal = 106 sequence of time
series data into nens sets, each of which consists of nspan steps and
define

ūj(nspan) = 1
nspan

nspan∑
i=1

Uj(i). (5)

The use of absolute value instead of the displacement itself is
intended for the ease of distinction of the results between the dif-
ferent conditions of �. The finite amount of data is processed as
follows:

�(q, nspan, nens) ≡ 1
nspan

ln

⎡
⎣ 1

nens

nens∑
j=1

exp(qnspanūj(nspan))

⎤
⎦ , (6)

u(q, nspan, nens) = d�(q,  nspan, nens)
dq

, (7)

S(u(q), nspan, nens) = qu(q, nspan, nens) − �(q, nspan, nens), (8)

�(q, nspan, nens) ≡ du(q, nspan, nens)
dq

. (9)

We have previously shown that this analysis uncovers the char-
acteristics of anisotropy in the Brownian motion of prolate particles
[16] and the motility of model bacteria [17]. In particular, charac-
teristic time scale of the dynamics can be revealed from �(0, nspan,
nens) as a function of nspan [17].

3. Results and discussion

The time-series data of displacement per �t for different condi-
tions of � are shown in Fig. 2(a). The data are numerically generated
by the rule defined in Section 2.1 under the condition that � is var-
ied while R is kept constant to be 0.5. Namely, the mean duration
of continuous diffusing state is defined to be equal to the duration
of single adsorption state �, and each of the diffusion duration is
exponentially distributed. Although difference in Fig. 2(a) is quali-
tatively recognized, the mean square displacements (MSDs) are the
same for all of the three cases as shown in Fig. 2(b). It means that
the dynamics of � = 0.1, 1, and 10 share the same one-dimensional
diffusion coefficient D since the slope of MSD  corresponds to it:

D = lim
t→∞

1
2t

〈|x(t) − x(0)|2〉, (10)

where x(t) and 〈〉 are the position at time t and the ensemble aver-
age, respectively. Furthermore, the model has a characteristic that
displacement distribution at the resolution of �t  = 10−2 is the same
regardless of the adsorption duration as shown in Fig. 3(a). These
characteristics are realized by keeping the time fraction of unit
adsorption duration R in the overall dynamics to be 0.5 regardless
of �, which leads to the overall diffusion coefficient D = Dp(1 − R).

Whereas the variation of � does not exhibit the difference in
the displacement distribution at the time resolution of �t, it is
reflected on the displacement distribution at coarser time reso-
lution. Fig. 3(b) shows the histogram of displacement per frame
interval Tframe. Whereas the displacement distribution at the res-
olution �t  shown in Fig. 3(a) is the superposition of Gaussian
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