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a  b  s  t  r  a  c  t

This study  uses  a differential  evolution  method  to  identify  the  coefficients  of  second-order  differential
equations  of  self-excited  vibrations  from  a time  signal.  The  motivation  is found  in  the  frequent  occur-
rence  of  this  vibration  type  in physics  and  engineering.  In the  proposed  method,  an  equation  structure  is
assumed  at the  level  of the  differential  equation  and  a population  of  candidate  coefficient  vectors  undergo
evolutionary  training.  In this  way  the numerical  constants  of non-linear  terms  of  various  self-excited
vibration  types  were  recovered,  requiring  only  the  original  signal.  The  method  is validated  by comparison
with  regression  of  the  analytical  solution  of  a  linear  vibration.  Comparisons  are  given regarding  accuracy
and  computation  time.  A  sensitivity  analysis  reveals  the  influence  of  the  problem  stiffness  and  the  set-
tings  of the  integration  algorithm  for  evaluating  the  candidate  models.  The  algorithm  is  extended  to  allow
for  stability  constraints  based  on  classification  of  candidates  by comparing  with data  from  Monte  Carlo
simulations.  This  boosts  accuracy  tremendously  and yields  accurate  coefficient  values.  The  presented
method  shows  promise  for future  applications  in  engineering,  such  as  early-warning  systems.

©  2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

This paper explores the use of evolutionary computing (EC)
for the identification of self-excited vibrations, which appear in
many problems in physics, biology and engineering. Examples
include instabilities of train wheels, positive feedback phenomena
in electrical circuits and flow-induced vibrations of gates in civil
engineering structures. In the last example, interactions between
the gate motion and adjacent turbulent flow can cause threatening
dynamic forces on weirs and discharge sluices [12,16,10]. Because
their impact is unwanted in most real-life instances, recognising
and describing self-exciting oscillatory responses is of paramount
concern. Apart from practical implications, they are also theoreti-
cally interesting as objects of analytical study [21].

The self-excited (or self-induced) vibration type is defined by
the driving force coming from the displacement of the oscillating
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body itself [6]. That is, a self-sustained system exists without the
need for external forcing. New energy is fed into the system through
negative damping. This paper treats vibrations with one degree
of freedom, which arise from a single mass-spring oscillator. The
classic way to describe these mathematically is by a second-order
ordinary differential equation (ODEs). The first two  columns in Fig. 1
show quintessential self-excitation cases: a negative damping con-
stant and the Van der Pol oscillator. The latter famous case has a
non-linear damping term and for high enough values of the param-
eter �, so-called ‘relaxation vibrations’ occur which contain sudden
transitions with short moments of high velocity. The third example
in the right column of Fig. 1 shows a non-linear mass term; to isolate
this effect, an undamped oscillation is used. A standard approach is
to make plots in the phase-plane; a deformed limit cycle is usually
a good telltale of non-linear behaviour. In the absence of external
forcing, these oscillations do not show chaotic behaviour.

The aim of our present study is to devise and test a compu-
tational method that solves the inverse problem of identifying
self-excited vibrations. That is, we wish to uncover the coefficients
of the ODE behind a given time series y(t), which we will call the
displacement signal. From the viewpoint of system identification,
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Fig. 1. Vibration examples shown in time domain (upper row) and in phase plane (lower row). Left column: constant negative damping; middle column: non-linear damping
by  Van der Pol oscillator; right column: non-linear mass term. The corresponding ODE equations are written on top; y is the vertical displacement of the mass, t is the
independent variable time, and ẏ = dy/dt  is the first derivative. The initial states are indicated by thick dots.

we are dealing with an output-only problem where no data on the
input signal (forcing) is available.

Previous work on the application of gate vibrations of hydraulic
structures considered the design of a control system based on
classification of sensor data and avoidance of critical levels by com-
bining spectral analysis and machine learning [7]. The drawback
of spectral analysis is that it does not detect the non-linearities
that are characteristic for self-excited oscillations. The choice of a
data-driven approach for this particular problem is underlined by
the time-consuming efforts required to simulate the complexities
and conditions in a numerical model based on fundamental physics
equations [8].

System identification studies embarked on the task of inferring
ODE models a few decades ago [1]. However, the fixed structure
acting as a vehicle for the parameter optimization was usually
not an ODE, but rather an easy-to-compute basis function like a
polynomial. The advent of modern heuristics [18] and the steady
increase in computing power has enormously boosted possibilities
for regression of all kinds (e.g. by artificial neural networks), but
many techniques do not provide clear insights into the working of
the system.

A breakthrough came with the birth of genetic programming
(GP) by Koza [13], which has been applied extensively to sys-
tem identification problems ever since [3]. Genetic programming,
part of the evolutionary algorithms family, proved to be ideal for
evolving the underlying equation structures by means of sym-
bolic regression, see e.g. [2]. Schmidt and Lipson [19] elegantly
demonstrated the power of GP for identifying non-linear dynamical
systems by ‘discovering’ physical laws and functions automatically
from experimental data.

In our study, which is an extension of recent work [9], it will
be assumed that the main part of the equation structure is already
known, the basic second-order ODE without external forcing. The
search for the remaining unknown non-linear terms could benefit
from symbolic modelling, but we  choose to focus on finding only
the coefficients. Even apart from the extra computational burden
of GP, in many practical situations a reduced number of hypothe-
ses of equation structures exist thanks to domain expertise input.
A second reason is that in GP studies the emphasis is often on
the structure and the problem of determining non-trivial numer-
ical constants is secondary, while for the application at hand this
is essential. The chosen differential evolution (DE) method never-
theless facilitates a future extension of the algorithm to GP-based
system identification, as the algorithmic set-up of fitness evaluation
is similar.

We  choose to evaluate the candidate ODE  models by solv-
ing them by numerical integration. An obvious, much cheaper
alternative is to differentiate the target signal twice and per-
form regression on the acceleration signal ÿ(t). But numerical
differentiation is not a trivial task in this context [14]; the noise
present in real-life data makes it necessary to apply some kind of
filter. This is avoided in the present study, where only the orig-
inal signal y(t) is used and the initial value of the velocity ẏ0.
Yet other approaches use structures that are conveniently com-
puted, such as the discrete map  used by Howard and Oakley
[11], but these generally provide insufficient insight in the system
because the resulting expression has a format that is not eas-
ily interpreted. The idea is to really uncover the separate terms
(mass, damping and stiffness) in a way that allows a meaningful
analysis.
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