
Journal of Computational Science 5 (2014) 653–663

Contents lists available at ScienceDirect

Journal of Computational Science

journa l h om epage: www.elsev ier .com/ locate / jocs

Assuring consistency in mixed models

Ramzi A. Haraty ∗, Mirna F. Naous, Azzam Mourad
Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon

a r t i c l e i n f o

Article history:
Received 10 September 2013
Received in revised form 8 January 2014
Accepted 21 February 2014
Available online 3 March 2014

Keywords:
Role based access control
Clark Wilson
Consistency
Alloy

a b s t r a c t

Information systems security defines three properties of information: confidentiality, integrity, and avail-
ability. These characteristics remain major concerns throughout the commercial and military industry.
Ordinary users have taken these features as basis for their businesses. Furthermore, users may find it
necessary to combine policies in order to protect their information in a suitable way. However, inconsis-
tencies may arise as a result of implementing multiple secrecy and privacy models; and therefore, render
these services unsecure. In this paper, we propose an approach to detect and report inconsistencies when
choosing mixed models for integrity and security. It is based on specifying the policies in first order logic
and applying formal analysis. We demonstrate the feasibility of our proposition by applying it to the
Clark Wilson and role based access control models. We use the Alloy language and analyzer to formalize
the mixed model and check for any inconsistencies.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The goal of information systems is to control or manage the
access of subjects (users, processes) to objects (data, programs)
[11]. This control is governed by a set of rules and objectives called
a security policy. Data integrity is defined as “the quality, correct-
ness, authenticity, and accuracy of information stored within an
information system” [4]. Systems integrity is the successful and
correct operation of information resources. Integrity models are
used to describe what needs to be done to enforce the information
integrity policies. There are three goals of integrity:

• Prevent unauthorized modifications,
• Maintain internal and external consistency, and
• Prevent authorized but improper modifications.

Combining multiple secrecy and privacy policies in the same
service may cause inconsistencies. An inconsistency or contradic-
tion may undermine the proper functioning of the service creating
instances where some users may be allowed access to information
according to a rule, while not allowed according to another. Clearly,
it is important that inconsistencies be detected before the online
deployment of the system. Furthermore, users may not understand
the implications of adding or removing policies, which may grant

∗ Corresponding author. Tel.: +961 1867620; fax: +961 1867098.
E-mail address: rharaty@lau.edu.lb (R.A. Haraty).

rights that threaten privacy, or revoke rights that are instrumental
to information sharing.

Before developing a system, one needs to describe formally its
components and the relationships between them by building a
model. The model needs to be analyzed and checked to figure out
possible bugs and problems. Thus, formalizing integrity security
models helps designers to build a consistent system that meets its
requirements and respects the three goals of integrity. This objec-
tive can be achieved through the Alloy language and its analyzer.

Alloy is a structural modeling language for software design. It is
based on first order logic that makes use of variables, quantifiers
and predicates (Boolean functions) [6]. Alloy, developed at MIT, is
mainly used to analyze object models. It translates constraints to
Boolean formulas (predicates) and then validates them using the
Alloy Analyzer by checking code for conformance to a specifica-
tion [18]. Alloy is used in modeling policies, security models and
applications, including name servers, network configuration proto-
cols, access control, telephony, scheduling, document structuring,
and cryptography. Alloy’s approach demonstrates that it is possi-
ble to establish a framework for formally representing a program
implementation and for formalizing the security rules defined by a
security policy, enabling the verification of that program represen-
tation for adherence to the security policy.

There are several policies applied by systems for achieving and
maintaining information integrity. In this paper, we focus on the
role based access control and Clark Wilson and to show how they
can be checked for consistency or inconsistency using the Alloy
language and the Alloy Analyzer.

http://dx.doi.org/10.1016/j.jocs.2014.02.009
1877-7503/© 2014 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.jocs.2014.02.009
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jocs.2014.02.009&domain=pdf
mailto:rharaty@lau.edu.lb
dx.doi.org/10.1016/j.jocs.2014.02.009

654 R.A. Haraty et al. / Journal of Computational Science 5 (2014) 653–663

The remainder of this paper is organized as follows: Section 2
provides the literature review. Section 3 discusses the role based
access control security model. Section 4 discusses the Clark Wilson
security model. Section 5 present the mixed model and Section 6
concludes the paper.

2. Literature review

Modeling and validation has been used extensively in the lit-
erature [3–13]. Hassan and Logrippo [20] proposed a method to
detect inconsistencies of multiple security policies mixed together
in one system and to report the inconsistencies at the time when
the secrecy system is designed. The method starts by formalizing
the models and their security policies. The mixed model is checked
for inconsistencies before real implementation. Inconsistency in a
mixed model is due to the fact that the used models are incompat-
ible and cannot be mixed.

Zao et al. [9] developed the RBAC schema debugger. The debug-
ger uses a constraint analyzer built into the lightweight modeling
system to search for inconsistencies between the mappings among
users, roles, objects, permissions and the constraints in a RBAC
schema. The debugger was demonstrated in specifying roles and
permissions according and verifying consistencies between user
roles and role permissions and verifying the algebraic properties of
the RBAC schema.

Hassan et al. [21] presented a mechanism to validate access
control policy. The authors were mainly interested in higher level
languages where access control rules can be specified in terms that
are directly related to the roles and purposes of users. They dis-
cussed a paradigm more general than RBAC in the sense that the
RBAC can be expressed in it.

Shaffer [1] described a security Domain Model (DM) for conduct-
ing static analysis of programs to identify illicit information flows,
such as control dependency flaws and covert channel vulnerabil-
ities. The model includes a formal definition for trusted subjects,
which are granted privileges to perform system operations that
require mandatory access control policy mechanisms imposed on
normal subjects, but are trusted not to degrade system security.
The DM defines the concepts of program state, information flow and
security policy rules, and specifies the behavior of a target program.

Misic and Misic [8] addressed the networking and security archi-
tecture of healthcare information system. This system includes
patient sensor networks, wireless local area networks belonging
to organizational units at different levels of hierarchy, and the cen-
tral medical database that holds the results of patient examinations
and other relevant medical records. In order to protect the integrity
and privacy of medical data, they proposed feasible enforcement
mechanisms over the wireless hop. Haraty and Naous [15–17] also
modeled the clinical information systems policy. The authors used
the Alloy formal language to define these models and the Alloy
Analyzer to validate their consistency.

Haraty et al. [16] showed how secrecy policies can be checked
and inconsistency by modeling the Chinese Wall Model [5], Biba
Integrity Model [10], Lipner Model [19] and the Class Security
Model [2]. In their work, they listed the ordered security classes
(Top Secret, Secret, Confidential, and Unclassified) and their com-
partments (nuclear, technical, and biological) and defined those
using signatures. Then, the possible combinations and the rela-
tionships between classes and compartments were specified. Facts
were used to set the model constraints and to prove that the model
is consistent. In the Biba Integrity model, the authors listed the
subject security clearance and the object security classes and then
modeled the constraints of how subjects can read/write objects
based on “NoReadDown” and “NoWriteUp” properties. In [14], the

Fig. 1. Roles relatioship.

author presented a comparison of different secure systems with
their access control policies.

3. Role-based access control

In many organizations, “the end users do not own the informa-
tion for which they are allowed access” [7]. However, the company
is the actual owner of system objects as well as the programs that
process it. Control is often based on employee functions and access
control decisions are often determined by the users’ roles. This
suggests associating access with particular role of the user.

Since access to system modules is not tied to particular individ-
ual, role-based access control (RBAC) is used by many organizations
to protect data integrity and restrict access to information based on
users’ roles. RBAC model defines the following entities:

• Role r is a collection of job functions. It is a set of transactions that
a user or set of users can perform within an organization.

• Transactions are allocated to roles by a system administrator.
Each role is authorized to perform one or more transactions t.

• Subject s has roles in the system. The active role of a subject is
the role that is currently performing.

Fig. 1 shows Role 1 containing users 4, 5 and 6 as members. Users
of Role 1 can execute transactions trans a and trans b on object 1
and object 2.

Ferraiolo in [7] determined the formal description of RBAC in
terms of sets and relations as follows:

• For each subject, the active role is the one that the subject is
currently using: AR(s: subject) = {the active role for subject s}.

• Each subject may be authorized to perform one or more roles:
• RA(s: subject) = {authorized roles for subject s}.
• Each role may be authorized to perform one or more transactions:

TA(r: role) = {transactions authorized for role r}.
• Subjects may execute transactions. The predicate exec(s,t) is true

if subject s can execute transaction t at the current time, otherwise
it is false: exec(s: subject, t: tran) = true iff subject s can execute
transaction t.

Accordingly, three basic rules are required in RBAC model:

• Role assignment: A subject can execute a transaction only if the
subject has selected or been assigned a role. However, all active
users are required to have some active role.

• Role authorization: A subject’s active role must be authorized for
the subject with role assignment; this rule ensures that users can
take on only roles for which they are authorized.

• Transaction authorization: A subject can execute a transaction
only if the transaction is authorized for the subject’s active role.

Therefore, and according to RBAC model, a subject s can execute
a transaction t if it has an active role r and its role is authorized to
execute the transaction t. Also, RBAC can model the separation of
duty rule since users in some roles cannot enter other roles. This
means that users cannot perform the job functions of other roles.

Download English Version:

https://daneshyari.com/en/article/430399

Download Persian Version:

https://daneshyari.com/article/430399

Daneshyari.com

https://daneshyari.com/en/article/430399
https://daneshyari.com/article/430399
https://daneshyari.com

