
Journal of Computational Science 3 (2012) 474–479

Contents lists available at SciVerse ScienceDirect

Journal  of  Computational Science

j ourna l ho me page: www.elsev ier .com/ locate / jocs

Particle-in-cell  plasma  simulation  on  heterogeneous  cluster  systems

S.  Bastrakova, R.  Donchenkoa, A.  Gonoskovb, E.  Efimenkob, A.  Malysheva, I. Meyerova,∗,  I.  Surmina

a Lobachevsky State University of Nizhni Novgorod, Russia
b Institute of Applied Physics, Russian Academy of Sciences, Nizhni Novgorod, Russia

a  r  t  i  c  l  e  i  n  f  o

Article history:
Received 5 April 2012
Received in revised form 19 August 2012
Accepted 22 August 2012
Available online 29 August 2012

Keywords:
PIC code
Large-scale simulation
Scalabilty analysis
GPU optimization
Supercell

a  b  s  t  r  a  c  t

This  paper  offers  an  approach  to high-performance  implementation  of  the  Particle-in-Cell  (PIC)  algorithm
for GPU-enabled  heterogeneous  cluster  systems.  We  present  Picador  —  a tool  for  three  dimensional
plasma  simulation  based  on the fully  relativistic  PIC  algorithm  aimed  at research  of high  intensity  laser-
matter interaction.  It scales  up to at least  2048  CPU  cores  with  85%  strong  scaling  efficiency  and  512  GPUs
with 64%  weak  scaling  efficiency,  achieving  up to 28%  of the  peak  performance  on  the  CPU  and  14% on
the  GPU,  respectively.

© 2012  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Simulation of plasma dynamics and interaction of high intensity
laser pulses with various targets in particular is one of the currently
high-demand areas of computational physics. Among possible
applications are creation of compact sources for hadron therapy
for treating oncological diseases, creation of short-lived isotope
factories for bioimaging, and development of tools for research on
intramolecular and intraatomic processes. Solving practical prob-
lems is often possible only on supercomputers — problems are
known that require simulation of the dynamics of ∼109 and more
particles in an area represented by ∼108 grid cells.

Due to the high degree of nonlinearity and geometric complexity
of the problem, plasma dynamics research is often based on simula-
tion with the particle-in-cell (PIC) algorithm [1].  In the most general
case it implies numerical solving the equations of plasma parti-
cles motion together with the Maxwell’s equations on a discrete
grid. Since the development in 1950s the method has been widely
used in applied and fundamental research in many areas includ-
ing astrophysics, high intensity laser interaction science, inertial
confinement fusion and tokomaks issues. Among the advantages
of the algorithm are its intuitive clarity, straightforward relation to
the classical plasma physics and computational efficiency.

Nowadays, the development of the PIC method mainly contin-
ues in three directions. The first one is development of numerical
methods reducing computational errors of existing algorithms,

∗ Corresponding author.
E-mail address: meerov@vmk.unn.ru (I. Meyerov).

which is usually related to charge and energy conservation, numer-
ical heating, numerical dispersion, numerical instabilities, etc (see
Refs. [2,3] and references therein). The second direction is the mod-
ification of the well-known PIC algorithm to account for specific
physical phenomena such as particle collisions, ionization, radia-
tion reaction, quantum effects or to couple the existing code with
different approaches such as fluid or kinetic methods to reach appli-
cability and multi-scale properties in the context of the particular
studies. This can be usually done in a straightforward manner due
to the easy interpretation of PIC method in terms of classical physics
approach. Finally, the third direction can be attributed to high-
performance implementation of the PIC algorithm. During the last
years there is growing interest in such research for both traditional
cluster systems and heterogeneous systems offering graphics pro-
cessing units (GPUs) as a source of immense computational power.
The general PIC method includes interpolation of electromagnetic
field for each particle and accounting for particle contribution to
the current distribution. Both of these steps may  involve lots of
disordered memory accesses diminishing performance on GPUs. A
promising approach is maintaining specific ordering of the parti-
cles data in GPU memory, e. g. using supercells in Ref. [4].  While
both traditional supercomputer codes [5–12] and GPU codes [4,13]
are being developed simultaneously, new supercomputers are
more and more often designed to share performance among both
CPUs and GPUs thus raising a problem of heterogeneous codes
development.

We  present Picador [14] — a tool for three-dimensional
electromagnetic relativistic plasma simulation based on the
particle-in-cell method, aimed at research of high intensity
laser applications including generation of radiation with tailored

1877-7503/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.jocs.2012.08.012

dx.doi.org/10.1016/j.jocs.2012.08.012
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
mailto:meerov@vmk.unn.ru
dx.doi.org/10.1016/j.jocs.2012.08.012


S. Bastrakov et al. / Journal of Computational Science 3 (2012) 474–479 475

Fig. 1. The organization of the data exchanges. On the left — copy exchange of the magnetic field, on the middle — exchange of particles, on the right — add exchange of
currents.

properties and laser-driven particle acceleration. The ultimate goal
of our research is to create a high-performance code simulta-
neously utilizing all computational resources of heterogeneous
cluster systems: CPUs, GPUs, accelerators such as Intel MIC. This
paper addresses details of the PIC algorithm implementation for
CPUs and GPUs and presents the up-to-date results concerning
Picador efficiency and scalability on CPU- and GPU-enabled clus-
ter systems. We  describe the particle-in-cell algorithm in Section
2 and provide implementation details in Section 3. Results of com-
putational experiments are presented in Section 4 and discussed in
Section 5.

2. Methods

The particle-in-cell method is based on a self-consistent math-
ematical model representing plasma as an ensemble of negatively
charged electrons and positively charged ions. The charged par-
ticles move under the influence of the electromagnetic field
according to the relativistic equations of motion (all equations
given in CGS units):

∂�p
∂t

= q
(

�E + 1
c

�v × �B
)

(1)

∂�r
∂t

= �v = �p
m

(
1 +
(

�p
mc

)2
)− 1

2

, (2)

where m,  q, �r, �p,  and �v are the mass, charge, coordinates, momentum
and velocity of the particle, respectively; �E, �B  are the electric and
magnetic field values in the particle’s position; c is the speed of
light. The evolution of the electromagnetic field (�E, �B) is governed
by Maxwell’s equations:

∇ × �B = 4�

c
�j + 1

c

∂�E
∂t

(3)

∇ × �E = −1
c

∂�B
∂t

, (4)

where �j is the current density created by the particles.
The method assumes that the entire particle ensemble is repre-

sented by a smaller amount of so-called super-particles that have
the same charge-to-mass ratio as the real particles. Since the charge
and mass of the particle are only present in the equations of motion
(1) and (2) as part of the ratio, this representation provides the
equivalent plasma dynamics given the number of super-particles
is large enough.

The simulation area is covered by a uniform space grid. The
electric field �E and current density �j are represented by values in
the nodes of the grid, while the magnetic field �B is represented by
values in the centers of the cells of the grid. The data for the parti-
cle ensemble is stored as well, each particle of a particular type is
characterized by its position and velocity. The mass and charge are
determined from the particle’s type.

Each iteration of the computational loop corresponds to one
time step and comprises four stages: weighting currents, integrat-
ing field equations, interpolating fields, integrating particle motion

equations. The weighting currents stage implies computing of the
current density based on the known positions and velocities of
the charged particles. Each particle contributes to the current den-
sity values of only eight nearest grid nodes; the final values are
determined by summarizing contributions of all particles. On the
next stage the electric and magnetic fields on the grid are updated
through numerical integration of Maxwell’s equations with previ-
ously computed currents using the finite-difference time-domain
(FDTD) method [15]. Next, linear interpolation of the electric and
magnetic field grid values to the position of each particle is per-
formed; for each particle only values corresponding to the eight
nearest grid nodes are used. The resulting field values are used on
the last stage for integrating the particle motion equations with the
Boris method [1].

3. Implementation

Picador is written in C and C++in a fairly portable way, it supports
building under Windows and Linux (and potentially under other
POSIX-compliant systems). It is designed to be extensible; in par-
ticular, it allows to plug in different implementations of the main
computational stages as well as message passing mechanisms. Sim-
ulation tasks are defined in the Tcl scripting language.

The implementation runs on cluster systems with one or several
CPUs and GPUs on each node. The following execution scheme is
used:

1. The problem is distributed among the nodes through MPI.
2. One or several MPI  processes are launched on each node.
3. Each process uses either one or several CPU cores through

OpenMP or a GPU through OpenCL.

3.1. Problem decomposition

The problem is decomposed according to a territorial principle:
the simulation area is broken up into subareas (domains) handled
in parallel by separate MPI  processes. The process handling a partic-
ular domain keeps track of the data referring to the electromagnetic
fields and particles that are located in the corresponding part of the
physical space. Data corresponding to the boundaries between two
or more domains is kept in all processes handling such domains. In
addition, each process contain data referring to magnetic fields in
the centers of cells bordering the handled domain.

To keep all domain information relevant, the data referring
to the currents, fields and particles is exchanged. The exchanges
are organized as follows (see Fig. 1). During current and field
exchanges, each domain interacts with 6 neighbors. Each domain
transfers values of the magnetic field corresponding to half-cell
near boundary internal layer and receives values corresponding to
half-cell near boundary outer layer from the domain having these
values as internal. Values of current density correponding to the
same positions are added. Particle exchange involves interaction
with 26 neighbors, taking into account that when a particle leaves
a domain it ends up in one of the 26 neighboring domains (due



Download English Version:

https://daneshyari.com/en/article/430429

Download Persian Version:

https://daneshyari.com/article/430429

Daneshyari.com

https://daneshyari.com/en/article/430429
https://daneshyari.com/article/430429
https://daneshyari.com

