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a b s t r a c t

We report on a sophisticated numerical study of a parallel space–time algorithm for the computation
of periodic solutions of the driven, incompressible Navier–Stokes equations in the turbulent regime.
Efforts to apply the machinery of dynamical systems theory to fluid turbulence depend on the ability to
accurately and reliably compute such unstable periodic orbits (UPOs). For example, the UPOs may be used
to construct the dynamical zeta function of the system, from which very accurate turbulent averages of
observables may be extracted.

Though a number of algorithms for computing such orbits have been proposed and tested, in this
paper we focus on a space–time variational principle introduced by Lan and Cvitanović in 2004 [15]. This
method has not, to our knowledge, been tested on dynamical systems of high dimension because of the
formidable storage and computation required. In this paper, we use petascale computation to apply this
algorithm to weak hydrodynamic turbulence.

We begin with a brief description and reformulation of the space–time algorithm of Lan and Cvitanović.
We then describe how to apply this algorithm to the lattice-Boltzmann method for the solution of the
Navier–Stokes equations. In particular, we describe the fully parallel implementation of this algorithm
using the Message Passing Interface. This implementation, called HYPO4D, has been successfully deployed
on a large variety of platforms both in the UK and the USA and has shown very good scalability to tens of
thousands of computing cores.

Finally, we describe the application of this implementation to the problem of weak homogeneous tur-
bulence driven by an Arnold–Beltrami–Childress force field in three spatial dimensions, at a Reynolds
number of 371. We commence by systematically searching for nearly periodic orbits as candidate solu-
tions from which to begin the relaxation; we then apply the variational algorithm until convergence
is obtained. Because the algorithm requires storage of the space–time lattice, even the smallest orbits
require resources on the order of tens of thousands of computing cores. Using this approach, two UPOs
have been identified and some of their properties have been analysed.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Turbulence has been called the last unsolved problem of clas-
sical physics. Turbulent fluids are well known to exhibit large
non-normal fluctuations from equilibrium and macroscopic spatio-
temporal structure. Although the Navier–Stokes equations [1],
(NSE), which describe the behaviour of a turbulent viscous fluid,
have been known for more than a century, very few exact results
about turbulence have followed from them [2–5]. In particular, we
still lack the ability to make a priori predictions of the turbulent
averages of observables.
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The state space of a driven, viscous, incompressible fluid in the
turbulent regime is the infinite-dimensional function space of all
divergenceless vector fields. The dynamics of the Navier–Stokes
equations define a trajectory in this space. In the long-time
limit, this trajectory settles onto a finite-dimensional attract-
ing set [6], and the turbulent average of an observable may be
thought of as its integral over a natural measure on this attracting
set.

Strange attracting sets with highly structured natural mea-
sures are understood from low-dimensional examples, such as
the Lorenz attractor [7]. In such systems, the attracting sets are
replete with unstable periodic orbits (UPOs). These comprise a set
of measure zero that is nonetheless dense in the attracting set.
That is, the attracting set can be thought of as the closure of the
set of all UPOs. The countable sequence of UPOs provide a use-
ful characterization of the structure and dynamics of the attractor
[8].
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The natural measure of the attractor is an eigenfunction of the
Frobenius–Perron operator, L, of the dynamics under consider-
ation. The characteristic equation of this operator is one way of
defining the dynamical zeta function,

�(z) = 1
det (I − zL)

,

where I is the identity. The location of the poles of �(z), as well
as closely related functions, may be used to extract turbulent
averages of observables and their correlations [9]. As is the case for
other zeta functions, most notably the Riemann zeta function, �(z)
can be expressed as an infinite product over the prime periodic
orbits of the corresponding dynamical system. For many systems,
a good approximation to the dynamical zeta function (DZF) can
be constructed by using the lowest-period UPOs of the flow,
determined numerically [8]. As described in detail by Cvitanović et
al., knowledge of a finite set of low-period UPOs is often sufficient
to estimate statistical averages over the natural measure of the
attracting set. More recently, Kawasaki and Sasa [10] have argued
that even a single UPO, with a large period, might suffice to
characterize high-dimensional chaotic dynamical systems.

There are a number of potential advantages to this approach. The
averages obtained by using the DZF formalism can be very accurate,
particularly if the symbolic dynamics of the system in question are
known [11]. Averages thus obtained are not stochastic in nature,
as would be those obtained from a numerical time average; their
statistical errors do not decay as the inverse square root of the num-
ber of decorrelation times. Moreover, by maintaining a library of
low-period UPOs for a specified dynamical system, turbulent aver-
ages of observables may be computed without the need to perform
additional simulations.

The main challenge then lies in developing efficient algorithms
to compute the prime periodic orbits of the dynamical system
under study. These cannot be captured by a simple forward-time
integration due to their instability. Over the years, many methods
have been proposed for this. Some are “shooting methods” that
begin with orbits that do not quite close and use a Newton–Raphson
method to close them. In recent years, such methods have been
employed to facilitate the numerical discovery of time-periodic
solutions in plane Couette flow [12], in isotropic turbulence [13],
and in shell models of turbulence [14].

In 2004, a new variational principle for finding UPOs was pro-
posed by Lan and Cvitanović [15]. Whereas the shooting method
begins with an orbit that satisfies the dynamical equations but does
not close, the variational procedure begins with an orbit that is
closed but does not satisfy the dynamical equations. It then relaxes
this orbit to a periodic solution by minimizing the norm of the resid-
ual of the dynamical equations themselves. Because this method
calls for the storage of the entire orbit in space–time, it requires
high performance computing resources. It is perhaps for this reason
that it has received less attention than shooting methods.

In the present paper we reformulate the variational principle
approach for finding UPOs, and apply it to the lattice-Boltzmann
method [16] (LBM) for simulating the NSE. This is a quasi-
compressible numerical method (although it is often not
characterized as such) that can be used to simulate the incom-
pressible NSE when it is applied in the limit of low Mach number.
The LBM is a highly scalable numerical algorithm, particularly suit-
able for deployment on very large computational resources, and can
be straightforwardly folded into the variational method for finding
UPOs.

The paper is organised as follows: In Section 2 we present our
reformulation of the variational principle which will be applied to
the LBM. Section 3 briefly describes the particular LBM model con-
sidered, its implementation and performance scaling on a range of
supercomputing platforms. In this section we also report on the use

of this model to simulate weakly-turbulent fluids, and demonstrate
good agreement with results in the research literature. Section 4
describes the methodology that was used to identify suitable start-
ing estimates for the space–time variational relaxation procedure.
Finally, Section 5 presents the main results obtained, including a
description of the UPOs discovered by this method. We conclude
with a discussion of desirable future developments.

2. Variational principle

In this section we reformulate and discuss the space–time
variational principle for the determination of periodic orbits in a
specified dynamical system.

As noted in Section 1, most prior work on finding periodic
orbits in continuous-time dynamical systems has employed shoot-
ing methods. To describe this procedure, let S be a codimension-one
surface in the system’s state space, �, through which the orbit is
known to pass frequently. A point in S is chosen as an initial con-
dition, R(0), and its time evolution is followed until it returns to
the surface S at some later time, T. If we define the displacement
ı = R(T) − R(0) then the idea is to vary the initial starting point,
R(0), so as to make ı = 0. This variation can be achieved through
a multidimensional Newton–Raphson iteration method. Because
the procedure is unlikely to converge unless the initial guess is
already exceptionally close to a closed orbit [17], recent work by
Viswanath has introduced the use of hook step methods to improve
the robustness of the method [18].

While the storage requirements of the shooting method are not
extraordinary, it does require very long computation times, since
the NSE must be integrated forward in time at each step of the algo-
rithm. Lan and Cvitanović’s variational method requires instead
to store an entire space–time trajectory and subsequently relax
it towards a solution of the dynamical equations. This dramati-
cally increases the storage requirements but offers the possibility
of reduced computation time, since it allows one to reap the ben-
efits of parallelism in time as well as space. In recent work [19],
this method has been tested on the Lorenz equations [7] and other
low-dimensional dynamical systems, and found to yield robust
convergence to UPOs.

To understand the variational approach, suppose that our goal
is to find a solution R(t) for a differential equation of the form

Ṙ = f(R), (1)

where R is a point in the state space, f(R) is the vector field describ-
ing the dynamics, and the dot denotes differentiation with respect
to time t. Writing T for the unknown period, the approach is to
minimize

F([R], T) ≡ 1
2

∫ T

0

dt |Ṙ(t) − f(R(t))|2. (2)

This is a function of the orbit R(t), and a function of the unknown
period T. Note that F ≥ 0 from the definition, and F = 0 only for
solutions of Eq. (1). We propose to find periodic orbits of Eq. (1)
by minimizing F with respect to both R(t) and T. A straightforward
calculation yields the Fréchet derivative

ıF
ıR(t)

= −R̈ −
[∇f − (∇f)�]

· Ṙ + 1
2

∇∣∣f∣∣2
,

and the partial derivative

∂F
∂T

= 1
2

∣∣Ṙ(T) − f(R(T))
∣∣2 − 1

2

∣∣Ṙ(0) − f(R(0))
∣∣2

and both of these derivatives must vanish for a periodic orbit. Here
we have used ∇ to denote derivatives with respect to the compo-
nents of R. Also, the superscript � denotes the transpose operator,
not be confused with the period T.
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