
Journal of Discrete Algorithms 31 (2015) 120–128

Contents lists available at ScienceDirect

Journal of Discrete Algorithms

www.elsevier.com/locate/jda

String shuffle: Circuits and graphs

Neerja Mhaskar a,1, Michael Soltys b,∗,1

a McMaster University, Dept. of Computing & Software, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
b California State University Channel Islands, Dept. of Computer Science, One University Drive, Camarillo, CA 93012, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 19 January 2015

Keywords:
String shuffle
Circuit complexity
Lower bounds
Monge

We show that shuffle, the problem of determining whether a string w can be composed
from an order preserving shuffle of strings x and y, is not in AC0, but it is in AC1. The fact
that shuffle is not in AC0 is shown by a reduction of parity to shuffle and invoking the
seminal result of Furst et al., while the fact that it is in AC1 is implicit in the results of
Mansfield. Together, the two results provide a lower and upper bound on the complexity
of this combinatorial problem. We also explore an interesting relationship between graphs
and the shuffle problem, namely what types of graphs can be represented with strings
exhibiting the anti-Monge condition.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Suppose that we are given three strings x, y, w over the binary alphabet Σ = {0, 1}. The shuffle problem asks the
following question: can we form w as a “shuffle” of x and y? That is, can we compose the third string by weaving together
the first two, while preserving the order within each string? For example, over the binary alphabet Σ = {0, 1}, given 000,
111, and 010101, we can obviously answer in the affirmative. We give the formal definition of the shuffle operation in
Section 1.1.

Mansfield [17] shows that a clever dynamic programming algorithm can determine whether w , is a shuffle of x, y in
time O (|w|2), and the same paper poses the question of determining a lower bound. In this paper we show a fairly tight
upper and lower bound for the shuffling problem in terms of circuit complexity. We show that:

(i) bounded depth circuits of polynomial size cannot solve shuffle, but that
(ii) logarithmic depth circuits of polynomial size can do so.

This paper is an expanded version of [30], and it contains more detailed proofs, as well as new results in Section 4.2. The
reader is encouraged to download the Python code shuffle.py, from the corresponding author’s web page, in order to
experiment with the ideas in Section 4.2. Finally, since the publication of [30], the paper [4] has also appeared, containing
the related but independent result that unshuffling a square is NP-hard.

The paper is structured as follows: in Section 1.3 we give the background on circuit complexity. In Sections 2 and 3
we give the upper and lower bounds on the circuit complexity of shuffle, respectively. The bounds are summarized in

* Corresponding author.
E-mail address: michael.soltys@csuci.edu (M. Soltys).
URL: http://soltys.cs.csuci.edu (M. Soltys).

1 Supported in part by the NSERC Discovery Grant.

http://dx.doi.org/10.1016/j.jda.2015.01.003
1570-8667/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.jda.2015.01.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jda
mailto:michael.soltys@csuci.edu
http://soltys.cs.csuci.edu
http://dx.doi.org/10.1016/j.jda.2015.01.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jda.2015.01.003&domain=pdf

N. Mhaskar, M. Soltys / Journal of Discrete Algorithms 31 (2015) 120–128 121

Theorem 5. In Section 4.1 we examine other reductions to shuffle, and we remark on the high expressibility of the shuffle
predicate, i.e., we show that basic properties of strings can be re-stated in terms of shuffles. In Section 4.2 we examine the
connection between graph properties and the shuffle predicate. We finish with open problems in Section 5.

1.1. Definitions

A shuffle is sometimes also called a “merge” or an “interleaving”. The intuition for the definition is that w can be
obtained from u and v by an operation similar to shuffling two decks of cards.

If x, y, and w are strings over an alphabet Σ , then w is a shuffle of x and y provided there are (possibly empty) strings
xi and yi such that x = x1x2 · · · xk and y = y1 y2 · · · yk and w = x1 y1x2 y2 · · · xk yk . Note that |w| = |x| + |y| is a necessary
condition for the existence of a shuffle. The advantage of the definition given here is that it is very succinct; the problem is
that it can be misleading: there are many ways to shuffle two strings, not just strict alternation of one symbol from each
string. But keep in mind that some xi and y j may be ε, so for example, if x1 �= ε, x2 �= ε, and y1 = ε, then this would mean
that we take the first two symbols of x before we take any symbols from y. In short, by choosing certain xi ’s and y j ’s equal
to ε’s, we can obtain any shuffle from an ostensibly strictly alternating shuffle.

The predicate Shuffle(x, y, w) holds if and only if w is a shuffle of x, y, as described in the above paragraph. We define
the language Shuffle as, Shuffle = {〈x, y, w〉 : Shuffle(x, y, w)}. Given this terminology, the bounds proven in this paper can
be stated as: Shuffle /∈ AC0, but Shuffle ∈ AC1.

Shuffling can be defined over any alphabet, but in this paper we work mostly with the binary alphabet Σ = {0, 1}. The
naming convention we use is that lower case “shuffle” and “parity” denote the generic problems, while Shuffle(x, y, w)

and Parity(x) denote the corresponding predicates, and Shuffle and Parity without arguments denote the corresponding
languages.

We will work with circuits that compute the predicate Shuffle(x, y, w), or alternatively decide the language Shuffle. Let
a ·b denote the concatenation of two strings, and let 〈x, y, w〉 denote the encoding of three strings. For shuffle we can simply
let 〈x, y, w〉 = x · y · w , as for a well formed input |x| = |y| = n and |w| = 2n, so we can extract x, y, w from x · y · w . Thus,
a family of circuits C = {Cn} that computes Shuffle(x, y, w) is parametrized by 4n, that is, the circuit Cn has 4n inputs,
corresponding to the 4n bits of x · y · w . We define circuits in Section 1.3.

1.2. History

Following the presentation of the history of shuffle in [4], we mention that the initial work on shuffles arose out of
abstract formal languages. Shuffles were later motivated by applications to modeling sequential execution of concurrent
processes. The shuffle operation was first used in formal languages by Ginsburg and Spanier [8]. Early research with ap-
plications to concurrent processes can be found in Riddle [23,24] and Shaw [27]. A number of authors, including [9,10,
12–16,19,20,28] have subsequently studied various aspects of the complexity of the shuffle and iterated shuffle operations
in conjunction with regular expression operations and other constructions from the theory of programming languages.

In the early 1980’s, Mansfield [17,18], and Warmuth and Haussler [33], studied the computational complexity of the
shuffle operator on its own. The paper [17] gave a polynomial time dynamic programming algorithm for computing
Shuffle(x, y, w).

In [18] this was extended to give polynomial time algorithms for deciding whether a string w can be written as the
shuffle of k strings u1, . . . , uk , for a constant integer k. The paper [18] further proved that if k is allowed to vary, then the
problem becomes NP-complete (via a reduction from Exact Cover with 3-Sets).

Warmuth and Haussler [33] gave an independent proof of the above result, and went on to give a rather striking im-
provement by showing that this problem remains NP-complete even if the k strings u1, . . . , uk are equal. That is to say,
the question of, given strings u and w , whether w is equal to an iterated shuffle of u is NP-complete. Their proof used a
reduction from 3-Partition.

In [4] we show that square shuffle, i.e., the problem of determining whether a given string w is a shuffle of some x with
itself, that is, whether the predicate ∃x, |x| < |w| ∧ Shuffle(x, x, w) holds, is NP-hard. The paper [25] gives an alternative
proof of the same result.

1.3. Background on circuits

A Boolean circuit can be seen as a directed, acyclic, connected graph in which the input nodes are labeled with variables
xi and constants 1, 0, representing true and false, respectively, and the internal nodes are labeled with standard Boolean
connectives ∧, ∨, ¬, that is, AND, OR, NOT, respectively. We often use x̄ to denote ¬x, and the circuit nodes are often called
gates.

The fan-in, i.e., number of incoming edges, of a ¬-gate is always one, and the fan-in of ∧, ∨ can be arbitrary, even
though for some complexity classes, such as SAC1 defined below, we require that the fan-in be bounded by a constant. The
fan-out, i.e., number of outgoing edges, of any node can also be arbitrary. Note that when the fan-out is restricted to be
exactly one, circuits become Boolean formulas. Each node in the graph can be associated with a Boolean function in the
obvious way. The function associated with the output gate(s) is the function computed by the circuit. Note that a Boolean

Download English Version:

https://daneshyari.com/en/article/430552

Download Persian Version:

https://daneshyari.com/article/430552

Daneshyari.com

https://daneshyari.com/en/article/430552
https://daneshyari.com/article/430552
https://daneshyari.com

