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1. Introduction

Pattern avoidance is a topic of interest in Combinatorics on Words. A pattern is a sequence over an alphabet of variables,
which are denoted by A, B, C, etc. We obtain an occurrence of the pattern if we replace the variables with arbitrary
non-empty words in such a way that we replace each occurrence of the same variable with the same word. A pattern p
is avoidable (resp., k-avoidable) if there exists an infinite word (resp., infinite word over a k-sized alphabet) that contains
no occurrence of p; otherwise, p is unavoidable (resp., k-unavoidable). The avoidability index of the pattern is the smallest
integer k for which it is k-avoidable; if no such k exists, the index is oc.

The problem of deciding whether a given pattern is avoidable has been solved [1,14], but the one of deciding whether
it is k-avoidable has remained open. An alternative is the problem of classifying all the patterns over a fixed number of
variables according to their avoidability indices. This classification has been completed for unary (those over one variable
A), for binary (those over two variables A, B), as well as for ternary patterns (those over three variables A, B, C) [7,11,12].

For the lower bounds, we use the so-called backtracking algorithm from [8], while for the upper bounds, we provide
HDOL systems. For a finite alphabet X', a morphism f:X* — X* and ag € X, the tuple (X, f,ap) is called a DOL system
(Deterministic 0-sided Lindenmeyer system) and the DOL language generated by the system is the set {f"(ag) | n € N}. For
example, the Thue-Morse morphism t(a) = ab and t(b) = ba gives the DOL system ({a, b}, t, a) generating the language

{e,a,ab, abba, abbabaab, abbabaabbaababba, .. .}.
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For a DOL system (X, f,ap), the fixed point is f®(ap) = limp_ ~ f"(ap), provided the limit exists. The Thue-Morse word is
t®(a). Now, for a morphism g: X} — X3 with alphabets X, ¥ and a DOL system (X1, f,ao), the tuple (X1, f,ao, X2, g)
is called an HDOL system whose generated language is the set {go f"(ag) | n € N}.

In [5], we have completed the classification of the avoidability indices of all the binary patterns in partial words (words
with holes) that was started in [6]. The algorithms described in Section 5 of this paper have provided us with the morphisms
necessary to complete this classification, which is recalled in the following theorem.

Theorem 1. (See [5].) For partial words, binary patterns fall into three categories:

1. The binary patterns €, A, AA, AAB, AABA, AABAA, AB, ABA, and their complements, are unavoidable (or have avoidability
index o0).

2. The binary patterns AABAB, AABB, ABAB, ABBA, their reverses, and complements, have avoidability index 3.

3. All other binary patterns, and in particular all binary patterns of length six or more, have avoidability index 2.

In this paper, we investigate the problem of classifying all the avoidable ternary patterns with respect to partial word
avoidability. We identify the avoidability indices of almost all of the ternary patterns and show that only four are left in
order to complete the classification (for those four we give lower and upper bounds).

The contents of our paper are as follows: In Section 2, we give some background on partial words and patterns (for
more information, see [2,11]). In Section 3, we discuss the classification of the ternary patterns. In Section 4, we make some
observations for general pattern avoidance. In Section 5, we describe an algorithm to search for an HDOL system avoiding a
given pattern. Finally in Section 6, we conclude with some remarks. Note that we have put in Appendix A a ternary lexicon
which lists the partial word avoidability indices for the ternary patterns, or at least lists bounds for them.

2. Preliminaries

Let X be a finite alphabet of letters. A partial word over X is a sequence of symbols from X, = X' U {¢}, where X is
augmented with the “hole” symbol <. A (full) word is a partial word without holes. The symbol at position i of a partial
word u is denoted by u[i], while the length of u, i.e., the number of symbols in u, is denoted by |u|. The empty word & has
length zero. The set of all full words (resp., non-empty full words) over X is denoted by X* (resp., XT), while the set of
all partial words (resp., non-empty partial words) over X is denoted by X} (resp., XJ). The set of all full (resp., partial)
words over X of length n is denoted by X" (resp., X7).

A partial word u is a factor (resp., prefix, suffix) of a partial word v if there exist x, y such that v =xuy (resp., v=1uy,
v = xu). The factor, prefix, or suffix u is proper if u # ¢ and u # v. We denote by Pref(v) (resp., Suf(v)) the set of all
prefixes (resp., suffixes) of v. If u and v are two partial words of equal length, then u is compatible with v, denoted by
u t v, if u[i] = v[i] whenever ul[i], v[i] € X. If u, v are non-empty compatible partial words, then uv is a square. A full word
compatible with a factor of a partial word v is a subword of v.

Let A, X N A=, be an alphabet of pattern variables and denote them by A, B, C, etc. A pattern is a word over A,
e.g., AABAACACCBAACA is a ternary pattern. We denote by alph(p) the set of distinct variables in pattern p. For a partial
word w € X} and pattern p € A*, we say that w meets p or p occurs in w if there exists some non-erasing morphism
@ :A* — X* such that ¢(p) is compatible with a factor of w; otherwise w avoids p. These definitions also apply to infinite
partial words over X which are functions from N to X,,.

A pattern p is k-avoidable if there is a partial word over a k-sized alphabet with infinitely many holes that avoids p. We
say that p is avoidable if it is k-avoidable for some k. For a given pattern p, the avoidability index wu(p) is the minimal k
such that p is k-avoidable. If p is unavoidable, @ (p) = oco.

For a given pattern p, can we determine @ (p)? A concept useful to answer this question is division of patterns. If p occurs
in a pattern q, then p divides q. For instance, ABACBABC divides ABABCBABBC (replacing C by BC gives q from p). If p
divides q and an infinite partial word avoids p then it also avoids g, and so u(q) < w(p).

3. Classification of the ternary patterns

In classifying the avoidability indices of the ternary patterns, it is useful to consider the directed tree of patterns T,
where the root of T is labeled by € and each node has children labeled by every canonical pattern formed by appending A,
B, C to the parent node’s pattern, with all edges directed from parent to child. We have a partial order relation defined on
the set of canonical ternary patterns by q > p if there is a path in T from the node labeled by pattern g to the node labeled
by pattern p. Because q > p implies q | p, we have that w(q) > w(p). The classification is complete when every node of T
is appended with the avoidability index of the pattern labeling it.

First, we use unavoidability results to rule out known 2-unavoidable patterns, and proceed via a depth-first search to
find 2-avoidable patterns which are identified as such using division arguments from the binary patterns and the HDOL
finding algorithm described in Section 5. Once a pattern p is known to have avoidability index two, we know its children,
grandchildren, etc., also have avoidability index two. We find by exhaustion that every ternary pattern with length twelve
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